166 resultados para Monoamine oxidase A
Resumo:
Fresh-cut fruit products, including carambola (Averrhoa carambola L.) have limited marketability due to cut surface browning attributed to oxidation of phenolic compounds by enzymes such as polyphenol oxidase (PPO). The objective of this study was to evaluate postharvest changes of carambola slices in three different packagings. Carambola fruit (cv. Fwang Tung) were picked from the orchard of Estação Experimental de Citricultura de Bebedouro at mature-green stage. Fruit were washed, dipped in NaOCl solution (200 mg.L -1 for 5 minutes), and stored overnight at 10°C. Fruit were manually sliced into pieces of approximately 1 cm. Slices were rinsed with NaOCl solution at 20 mg.L-1, drained for 3 minutes, and packaged in polyethylene terephthalate (PET) trays (Neoform N94); polystyrene trays covered with PVC 0.017 mm (Vitafilm - Goodyear); and vacuum sealed polyolefin bags (PLO, Cryovac PD900). The packages were stored at 6.8°C and 90%RH for 12 days and samples taken every 4 days. PET trays and PVC film did not significantly modify internal atmosphere and the high water permeability of PVC led to more rapid slice desiccation. PPO activity was lower when slices were packaged in PLO vacuum sealed bags, which reduced discolouration and led to better appearance maintenance for up to 12 days.
Resumo:
Chronic chagasic cardiomyopathy is a leading cause of heart failure in Latin American countries. About 30% of Trypanosoma cruzi-infected individuals develop this severe symptomatic form of the disease, characterized by intense inflammatory response accompanied by fibrosis in the heart.We performed an extensive microarray analysis of hearts from a mouse model of this disease and identified significant alterations in expression of ~12% of the sampled genes. Extensive up-regulations were associated with immune-inflammatory responses (chemokines, adhesion molecules, cathepsins, and major histocompatibility complex molecules) and fibrosis (extracellular matrix components, lysyl oxidase, and tissue inhibitor of metalloproteinase 1). Our results indicate potentially relevant factors involved in the pathogenesis of the disease that may provide newtherapeutic targets in chronic Chagas disease. © 2010 by the Infectious Diseases Society of America.
Resumo:
This paper describes the use of Au nanoparticle (NP)-containing hydrogel microstructures in the development of electrochemical enzyme-based biosensors. To fabricate biosensors, AuNPs were conjugated with glucose oxidase (GOX) or horseradish peroxidase (HRP) molecules and were dispersed in the prepolymer solution of poly(ethylene glycol) diacrylate (PEG-DA). Vinylferrocene (VF) was also added into the prepolymer solution in order to lower operating potential of the biosensor and to prevent oxidation of interfering substances. The prepolymer solution was photolithographically patterned in alignment with an array of Au electrodes fabricated on glass. As a result, electrode arrays became functionalized with AuNP/GOX- or AuNP/HRP-carrying hydrogel microstructures. Performance of the biosensors was characterized by impedance spectroscopy, chronoapmerometry and cyclic voltammetry. Impedance measurements revealed that inclusion of Au nanoparticles improved conductivity of PEG hydrogel by a factor of 5. Importantly, biosensors based on AuNP-GOX complex exhibited high sensitivity to glucose (100μAmM -1cm -2) in the linear range from 0.1 to 10mM. The detection limit was estimated to be 3.7×10- 7M at a signal-to-noise ratio of 3. Biosensors with immobilized AuNP/HPR had a linear response from 0.5 to 5.0μM of hydrogen peroxide with sensitivity of 1.4mAmM -1cm -2. The method for fabricating nanoparticle-carrying hydrogel microstructures described in this paper should be widely applicable in the development of robust and sensitive electrochemical biosensors. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
l-Amino acid oxidases (LAAOs) are flavoenzymes that catalytically deaminate l-amino acids to corresponding α-keto acids with the concomitant production of ammonia (NH 3) and hydrogen peroxide (H 2O 2). Particularly, snake venom LAAOs have been attracted much attention due to their diverse clinical and biological effects, interfering on human coagulation factors and being cytotoxic against some pathogenic bacteria and Leishmania ssp. In this work, a new LAAO from Bothrops jararacussu venom (BjsuLAAO) was purified, functionally characterized and its structure determined by X-ray crystallography at 3.1å resolution. BjsuLAAO showed high catalytic specificity for aromatic and aliphatic large side-chain amino acids. Comparative structural analysis with prokaryotic LAAOs, which exhibit low specificity, indicates the importance of the active-site volume in modulating enzyme selectivity. Surprisingly, the flavin adenine dinucleotide (FAD) cofactor was found in a different orientation canonically described for both prokaryotic and eukaryotic LAAOs. In this new conformational state, the adenosyl group is flipped towards the 62-71 loop, being stabilized by several hydrogen-bond interactions, which is equally stable to the classical binding mode. © 2012 Elsevier Inc.
Resumo:
The present study aims to evaluate the effect of fungicides and antibiotics to control bacterial spot (Xanthomonas perforans) in tomato, and the activation of pathogenesis-related proteins. Hybrid tomato AP 529 was used to assess the severity of disease. The treatments consisted of spraying with acibenzolar-S-methyl, fluazinam, pyraclostrobin, pyraclostrobin + methiran, copper oxychloride, copper oxychloride and mancozeb + oxytetracycline, and inoculated and non-inoculated controls. After three days of treatment, all plants were inoculated with X. perforans (10 6 CFU / mL). Leaf discs were collected for assessment of peroxidase, polyphenol oxidase, β-1,3 glucanase, phenylalanine ammonia lyase and protease. The area under the disease progress curve (AUDPC) was calculated with the data of severity. All treatments had reduced AUDPC compared to the inoculated control. Fungicides acibenzolar-S-methyl, pyraclostrobin, and pyraclostrobin + methiran had more satisfactory results in reducing the severity of bacterial spot on tomato. The products based on pyraclostrobin together with acibenzolar-S-methyl induced enzymatic activities of peroxidase, polyphenoloxidase and β-1,3 glucanase, indicating that these products may be related to the induction of resistance to bacterial spot on tomato plants.
Resumo:
Background: Illegal hunting is one of the major threats to vertebrate populations in tropical regions. This unsustainable practice has serious consequences not only for the target populations, but also for the dynamics and structure of tropical ecosystems. Generally, in cases of suspected illegal hunting, the only evidence available is pieces of meat, skin or bone. In these cases, species identification can only be reliably determined using molecular technologies. Here, we reported an investigative study of three cases of suspected wildlife poaching in which molecular biology techniques were employed to identify the hunted species from remains of meat.Findings: By applying cytochrome b (cyt-b) and cytochrome oxidase subunit I (COI) molecular markers, the suspected illegal poaching was confirmed by the identification of three wild species, capybara (Hydrochoerus hydrochaeris), Chaco Chachalaca (Ortalis canicollis) and Pampas deer (Ozotoceros bezoarticus). In Brazil, hunting is a criminal offense, and based on this evidence, the defendants were found guilty and punished with fines; they may still be sentenced to prison for a period of 6 to 12 months.Conclusions: The genetic analysis used in this investigative study was suitable to diagnose the species killed and solve these criminal investigations. Molecular forensic techniques can therefore provide an important tool that enables local law enforcement agencies to apprehend illegal poachers. © 2012 Sanches et al.; licensee BioMed Central Ltd.
Resumo:
The objective of this work was to evaluate conditions the effectiveness of acetolactate synthase (ALS) and protoporphyrinogen oxidase (PROTOX) inhibitors in the Bidens pilosa control under two water deficit conditions, as well as to determine the action under the content of soluble carbohydrates and protein and free amino acids of weed. The experimental design was randomized completely design, with four replications, with the treatments setup in a factorial scheme 4x2, with four herbicides (fomesafen lactofen, chlorimuron-ethyl and imazethapyr), and two soil water conditions (-0.5 MPa and -0.01MPa). At 7, 14, 21 and 28 days after application (DAA), was assessed visually control efficiency of herbicides. For the determination of organic solutes plants were collected at 24, 48, 72 and 96 hours after application (HAA), except for the amino acids were analyzed 48, 72 e 96 HAA. Herbicides fomesafen and lactofen were efficient to control E. heterophylla, while the ALS inhibitors (chlorimuron-ethyl e imazethapyr) provided an unsatisfactory control. Water deficit altered the efficiency of herbicides, mainly chlorimuronethyl. Lactofen provided a smaller content of soluble carbohydrates, in the same way, the protein ranged in the 72 HAA, the lower value observed for imazethapyr e lactofen respectively. Herbicide lactofen increased the concentration of free amino acids, while the imposition of water deficit caused an increase in soluble carbohydrate content.
Resumo:
Sophisticated molecular architectures can be produced with the layer-by-layer (LbL) method, which may combine distinct materials on the same film. In this study, we take advantage of this capability to produce cholesterol amperometric biosensors from LbL films containing hemoglobin (Hb) and cholesterol oxidase in addition to the polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(ethylene imine) (PEI). Following an optimization procedure, we found that an LbL film deposited onto ITO substrates, with the architecture ITO(PEI/Hb)5(PEI/COx)10, yielded a sensitivity of 93.4 μA μmol L-1 cm-2 for cholesterol incorporated into phospholipid liposomes, comparable to state-of-the-art biosensors. Hb acted as efficient electron mediator and did not suffer interference from phospholipids. Significantly, cholesterol could also be detected in real samples from chicken egg yolk, with no effects from potential interferents, including phospholipids. Taken together these results demonstrate the possible fabrication of low cost, easy-to-use cholesterol amperometric biosensors, whose sensitivity can be enhanced by further optimizing the molecular architectures of the LbL films. © 2012 Elsevier B.V.
Resumo:
Bemisia tabaci is one of the most important global agricultural insect pests, being a vector of emerging plant viruses such as begomoviruses and criniviruses that cause serious problems in many countries. Although knowledge of the genetic diversity of B. tabaci populations is important for controlling this pest and understanding viral epidemics, limited information is available on this pest in Brazil. A survey was conducted in different locations of São Paulo and Mato Grosso states, and the phylogenetic relationships of B. tabaci individuals from 43 populations sampled from different hosts were analysed based on partial mitochondrial cytochrome oxidase 1 gene (mtCOI) sequences. According to the recently proposed classification of the B. tabaci complex, which employs the 3.5% mtCOI sequence divergence threshold for species demarcation, most of the specimens collected were found to belong to the Middle East-Asia Minor 1 species, which includes the invasive populations of the commonly known B biotype, within the Africa/Middle East/Asia Minor high-level group. Three specimens collected from Solanun gilo and Ipomoea sp. were grouped together and could be classified in the New World species that includes the commonly known A biotype. However, six specimens collected from Euphorbia heterophylla, Xanthium cavanillesii and Glycine maxima could not be classified into any of the 28 previously proposed species, although according to the 11% mtCOI sequence divergence threshold, they belong to the New World high-level group. These specimens were classified into a new recently proposed species named New World 2 that includes populations from Argentina. Middle East-Asia Minor 1, New World and New World 2 were differentiated by RFLP analysis of the mtCOI gene using TaqI enzyme. Taq I analysis in silico also differentiates these from Mediterranean species, thus making this method a convenient tool to determine population dynamics, especially critical for monitoring the presence of this exotic pest in Brazil. © 2012 Blackwell Verlag, GmbH.
Resumo:
Background: Dogs are commonly affected by hyperglycemic conditions. Hyperglycemia compromises the immune response and favors bacterial infections; however, reports on the effects of glucose on neutrophil oxidative metabolism and apoptosis are conflicting in humans and rare in dogs. Considering the many complex factors that affect neutrophil oxidative metabolism in vivo, we investigated in vitro the specific effect of high concentrations of glucose on superoxide production and apoptosis rate in neutrophils from healthy dogs.Results: The capacity of the neutrophils to reduce tetrazolium nitroblue decreased significantly in the higher concentration of glucose (15.13 ± 9.73% (8 mmol/L) versus 8.93 ± 5.71% (16 mmol/L)). However, there were no changes in tetrazolium nitroblue reduction at different glucose concentrations when the neutrophils were first activated with phorbol myristate acetate. High concentrations of glucose did not affect the viability and apoptosis rate of canine neutrophils either with or without prior camptothecin stimulation. This study provides the first evidence that high concentrations of glucose inhibit the oxidative metabolism of canine neutrophils in vitro in a manner similar to that which occurs in humans, and that the decrease in superoxide production did not increase the apoptosis rate.Conclusions: A high concentration of glucose reduces the oxidative metabolism of canine neutrophils in vitro. It is likely that glucose at high concentrations rapidly affects membrane receptors responsible for the activation of NADPH oxidase in neutrophils; therefore, the nonspecific immune response can be compromised in dogs with acute and chronic hyperglycemic conditions. © 2013 Bosco et al.; licensee BioMed Central Ltd.
Resumo:
Four species of green lacewings occur in Brazil, of which Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) exhibits the widest geographical distribution. Chrysoperla externa is a predatory insect that is potentially useful as a biological control agent of agricultural pests. Studies on the genetic diversity of lacewing populations are essential to reduce the environmental and economic harm that may be caused by organisms with a low ability to adapt to the adverse and/or different environmental conditions to which they are exposed. We used the cytochrome oxidase I mitochondrial gene as a molecular marker to investigate the genetic diversity of green lacewing species collected from native and agroecosystem environments. Populations derived from native areas showed higher rates of genetic variability compared to populations from agroecosystems. Demographic changes in the form of population expansion were observed in agroecosystems, whereas populations in the native environment appeared stable over time. A statistical analysis showed significant genetic structure between each of the sampled groups, combined with its complete absence within each group, corroborating each group's identity. We infer that the loss of variability exhibited by populations from the agroecosystems is the result of genetic drift by means of the founder effect, a similar effect that has been observed in other introduced populations. Agroecosystems might therefore function as exotic areas for green lacewings, even when these areas are within the normal range of the species. © 2012 Sociedade Entomológica do Brasil.
Resumo:
Fish belonging to the genus Hypostomus are known for exhibiting a striking diversity in its karyotype structure, however the knowledge concerning the distribution patterns of heterochromatin and location of repetitive DNA sequences in the karyotypes is still limited. Aiming a better understanding of the chromosomal organization in this group, we analyzed three sympatric species of Hypostomus collected in the Hortelã stream, a component of the Paranapanema River basin, Botucatu/SP/Brazil. The analyses involved the cytogenetic characterization and chromosomal mapping of repetitive sequences and intra/interspecific comparisons using sequences of the cytochrome C oxidase subunit I. The results revealed that H. ancistroides presents a karyotype with 2n = 68 chromosomes, H. strigaticeps 2n = 72 chromosomes, and H. nigromaculatus 2n = 76 chromosomes. In addition to differences found in the diploid number, it was also observed variations in karyotypic formulae, amount of constitutive heterochromatin, and location of nucleolus organizer regions. The cytogenetic mapping of 5S and 18S rDNA, as well as of the H3 histone gene, disclosed a differential dispersion process among the three species. In some cases the Rex1 transposable element showed to be co-located with 5S rDNA sites. The molecular analyses support the cytogenetic data and represent an additional tool for the characterization of the analyzed species. The results evidenced that chromosomal variations are not restricted to differences in diploid number or karyotypic macrostructure in the genus Hypostomus, indicating that events such as transposition of heterochromatin and rDNA segments may participate in the differentiation process occurred in these species. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
DNA barcoding facilitates the identification of species and the estimation of biodiversity by using nucleotide sequences, usually from the mitochondrial genome. Most studies accomplish this task by using the gene encoding cytochrome oxidase subunit I (COI; Entrez COX1). Within this barcoding framework, many taxonomic initiatives exist, such as those specializing in fishes, birds, mammals, and fungi. Other efforts center on regions, such as the Arctic, or on other topics, such as health. DNA barcoding initiatives exist for all groups of vertebrates except for amphibians and nonavian reptiles. We announce the formation of Cold Code, the international initiative to DNA barcode all species of these 'cold-blooded' vertebrates. The project has a Steering Committee, Coordinators, and a home page. To facilitate Cold Code, the Kunming Institute of Zoology, Chinese Academy of Sciences will sequence COI for the first 10 specimens of a species at no cost to the steward of the tissues. © 2012 Blackwell Publishing Ltd.
Resumo:
Fipronil is a neurotoxic insecticide that inhibits the gamma-aminobutyric acid receptor and can affect gustative perception, olfactory learning, and motor activity of the honeybee Apis mellifera. This study determined the lethal dose (LD50) and the lethal concentration (LC50) for Africanized honeybee and evaluated the toxicity of a sublethal dose of fipronil on neuron metabolic activity by way of histochemical analysis using cytochrome oxidase detection in brains from worker bees of different ages. In addition, the present study investigated the recovery mechanism by discontinuing the oral exposure to fipronil. The results showed that mushroom bodies of aged Africanized honeybees are affected by fipronil, which causes changes in metabolism by increasing the respiratory activity of mitochondria. In antennal lobes, the sublethal dose of fipronil did not cause an increase in metabolic activity. The recovery experiments showed that discontinued exposure to a diet contaminated with fipronil did not lead to recovery of neural activity. Our results show that even at very low concentrations, fipronil is harmful to honeybees and can induce several types of injuries to honeybee physiology. © 2012 Springer Science+Business Media New York.
Resumo:
In flowering plants, alternative oxidase (Aox) is encoded by 3-5 genes distributed in 2 subfamilies (Aox1 and Aox2). In several species only Aox1 is reported as a stress-responsive gene, but in the leguminous Vigna unguiculata Aox2b is also induced by stress. In this work we investigated the Aox genes from two leguminous species of the Medicago genus (Medicago sativa and Medicago truncatula) which present one Aox1, one Aox2a and an Aox2b duplication (named here Aox2b1 and Aox2b2). Expression analyses by semi-quantitative RT-PCR in M. sativa revealed that Aox1, Aox2b1 and Aox2b2 transcripts increased during seed germination. Similar analyses in leaves and roots under different treatments (SA, PEG, H2O2 and cysteine) revealed that these genes are also induced by stress, but with peculiar spatio-temporal differences. Aox1 and Aox2b1 showed basal levels of expression under control conditions and were induced by stress in leaves and roots. Aox2b2 presented a dual behavior, i.e., it was expressed only under stress conditions in leaves, and showed basal expression levels in roots that were induced by stress. Moreover, Aox2a was expressed at higher levels in leaves and during seed germination than in roots and appeared to be not responsive to stress. The Aox expression profiles obtained from a M. truncatula microarray dataset also revealed a stress-induced co-expression of Aox1, Aox2b1 and Aox2b2 in leaves and roots. These results reinforce the stress-inducible co-expression of Aox1/Aox2b in some leguminous plants. Comparative genomic analysis indicates that this regulation is linked to Aox1/Aox2b proximity in the genome as a result of the gene rearrangement that occurred in some leguminous plants during evolution. The differential expression of Aox2b1/2b2 suggests that a second gene has been originated by recent gene duplication with neofunctionalization. © 2013 Elsevier GmbH. All rights reserved.