237 resultados para Modelagem crustal
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Pós-graduação em Biometria - IBB
Resumo:
Pós-graduação em Biometria - IBB
Resumo:
Pós-graduação em Ciência da Informação - FFC
Resumo:
Uma das necessidades da agricultura de precisão é avaliar a qualidade dos mapas dos atributos dos solos. Neste sentido, o presente trabalho objetivou avaliar o desempenho dos métodos geoestatísticos: krigagem ordinária e simulação sequencial gaussiana na predição espacial do diâmetro médio do cristal da goethita com 121 pontos amostrados em uma malha de 1 ha com espaçamentos regulares de 10 em 10 m. Após a análise textural e da concentração dos óxidos de ferro, calcularam-se os valores do diâmetro médio do cristal da goethita os quais foram analisados pela estatística descritiva e geoestatística; em seguida, foram utilizadas a krigagem ordinária e a simulação sequencial gaussiana. Com os resultados avaliou-se qual foi o método mais fiel para reproduzir as estatísticas, a função de densidade de probabilidade acumulada condicional e a estatística epsilon εy da amostra. As estimativas E-Type foram semelhantes à krigagem ordinária devido à minimização da variância. No entanto, a krigagem deixa de apresentar, em locais específicos, o grau de cristalinidade da goethita enquanto o mapa E-Type indicou que a simulação sequencial gaussiana deve ser utilizada ao invés de mapas de krigagem. Os mapas E-type devem ser preferíveis por apresentar melhor desempenho na modelagem.
Resumo:
Phosphorus is one of the limiting nutrients for sugarcane development in Brazilian soils. The spatial variability of this nutrient is great, defined by the properties that control its adsorption and desorption reactions. Spatial estimates to characterize this variability are based on geostatistical interpolation. However, inherent uncertainties in the procedure of these estimates are related to the variability structure of the property under study and the sample configuration of the area. Thus, the assessment of the uncertainty of estimates associated with the spatial distribution of available P (Plabile) is decisive to optimize the use of phosphate fertilizers. The purpose of this study was to evaluate the performance of sequential Gaussian simulation (sGs) and ordinary kriging (OK) in the modeling of uncertainty in available P estimates. A sampling grid with 626 points was established in a 200-ha experimental sugarcane field in Tabapuã, São Paulo State. The sGs algorithm generated 200 realizations. The sGs realizations reproduced the statistics and the distribution of the sample data. The G statistic (0.81) indicated good agreement between the values of simulated and observed fractions. The sGs realizations preserved the spatial variability of Plabile without the smoothing effect of the OK map. The accuracy in the reproduction of the variogram of the sample data obtained by the sGs realizations was on average 240 times higher than that obtained by OK. The uncertainty map, obtained by OK, showed less variation in the study area than that obtained by sGs. Thus, the evaluation of uncertainties by sGs was more informative and can be used to define and delimit specific management areas more precisely.