218 resultados para Mixture toxicity
Resumo:
Botryosphaeria rhodina MAMB-05 produced β-1,3-glucanases and botryosphaeran when grown on glucose, while Trichoderma harzianum Rifai only produced the enzyme. A comparison of long-term cultivation (300h) by B. rhodina demonstrated a correlation between the formation of botryosphaeran (48h) and its consumption (after 108h), and de-repression of β-1,3-glucanase synthesis when glucose was depleted from the nutrient medium, whereas for T. harzianum enzyme production commenced during exponential growth. Growth profiles and levels of β-1,3-glucanases produced by both fungi on botryosphaeran also differed, as well as the production of β-1,3-glucanases and β-1,6-glucanases on glucose, lactose, laminarin, botryosphaeran, lasiodiplodan, curdlan, Brewer's yeast powder and lyophilized fungal mycelium, which were dependent upon the carbon source used. A statistical mixture-design used to optimize β-1,3-glucanase production by both fungi evaluated botryosphaeran, glucose and lactose concentrations as variables. For B. rhodina, glucose and lactose promoted enzyme production at the same levels (2.30UmL -1), whereas botryosphaeran added to these substrates exerted a synergic effect favorable for β-glucanase production by T. harzianum (4.25UmL -1). © 2010 Elsevier B.V.
Resumo:
The phytochemical study of Virola sebifera leaves led to the isolation of three lignans: (+)-sesamin, (-)-hinokinin, and (-)-kusunokinin and three flavonoids: quercetin-3-O - L-rhamnoside, quercetin-3-O - D-glucoside, and quercetin-3-methoxy-7-O - D-glucoside by using techniques as high-speed counter-current chromatography and high-performance liquid chromatography. The crude extracts, fractions, and isolated compounds were evaluated for their insecticidal and fungicidal potential against Atta sexdens rubropilosa and its symbiotic fungus Leucoagaricus gongylophorus. The bioassay results showed a high insecticidal activity for the methanol crude extract of the leaves of V. sebifera and its n-hexane, dichloromethane and ethyl acetate fractions. The fungicidal bioassay revealed high toxicity of the lignans against L. gongylophorus. © 2012 Keylla Utherdyany Bicalho et al.
Resumo:
This study examined the antioxidant activity of lyophilized rosemary extract added to soybean oil, subjected to thermoxidation conditions and also its synergistic effect with the synthetic antioxidant tertiary butylhydroquinone (TBHQ). Soybean oil samples with no antioxidant added (SO), 3,000mg/kg rosemary extract (RE), 50mg/kg TBHQ (TBHQ), and a mixture of those two antioxidants (RE+TBHQ) were heated to 180C for 20h. After 0, 10 and 20h, the oxidative stability, total polar compounds, tocopherol content and fatty acid profile were determined. The addition of rosemary extract increased oxidative stability and resulted in a lower formation of total polar compounds and a higher retention of tocopherols. The RE treatment showed the highest amount of polyunsaturated fatty acids after 20h. There was not any synergy between TBHQ and rosemary extract in preventing oxidation of soybean oil. Rosemary extract showed a higher antioxidant potential when compared with TBHQ. PRACTICAL APPLICATIONS: Antioxidants are important ingredients in food processing because they have the capacity to protect foods, containing oils and fats, from damage caused by free radicals and reactive oxygen species. Synthetic antioxidants are widely used in the food industry; however, their utilization has been questioned because of toxicity. Therefore, there is a growing interest in the use of natural antioxidants to reduce or replace the synthetic antioxidants. Several species are used in cooking, medicine and by the pharmaceutical industry, standing out the rosemary. Being rich in compounds with high antioxidant activity, the rosemary extract can be used to replace synthetic antioxidants used in vegetable oils. © 2012 Wiley Periodicals, Inc.
Resumo:
A large volume of generated sewage sludge makes its disposal a problem. The usage of sludge in agriculture is highlighted by a number of advantages. However, heavy metals and other toxic compounds may exercise harmful effects to soil organisms. This study evaluated the possible toxic effects of a biosolid sample, under laboratory conditions, for 30 days, using diplopods Rhinocricus padbergi and plants Allium cepa (onion) as test organisms. The data obtained demonstrated that the biosolid raw sample had genotoxic potential for Allium cepa root tip cells. In the diplopods exposed to biosolid sample, epithelium disorganization in the midgut and a reduction of the volume of the hepatic cells were observed after 7 days of exposure. After 30 days, the animals still showed a reduction of the volume of the hepatic cells, but in minor intensity. Allium cepa analysis showed genotoxicity, but this effect was reduced after 30 days of bioprocessing by diplopods. This study was important to know the effects as well as to determine how this waste could be applied concerning the soil living organisms and plants. © 2012 Cintya Ap. Christofoletti et al.
Resumo:
The BTEX (benzene, toluene, ethylbenzene and xylene) mixture is an environmental pollutant that has a high potential to contaminate water resources, especially groundwater. The bioremediation process by microorganisms has often been used as a tool for removing BTEX from contaminated sites. The application of biological assays is useful in evaluating the efficiency of bioremediation processes, besides identifying the toxicity of the original contaminants. It also allows identifying the effects of possible metabolites formed during the biodegradation process on test organisms. In this study, we evaluated the genotoxic and mutagenic potential of five different BTEX concentrations in rat hepatoma tissue culture (HTC) cells, using comet and micronucleus assays, before and after biodegradation. A mutagenic effect was observed for the highest concentration tested and for its respective non-biodegraded concentration. Genotoxicity was significant for all non-biodegraded concentrations and not significant for the biodegraded ones. According to our results, we can state that BTEX is mutagenic at concentrations close to its water solubility, and genotoxic even at lower concentrations, differing from some described results reported for the mixture components, when tested individually. Our results suggest a synergistic effect for the mixture and that the biodegradation process is a safe and efficient methodology to be applied at BTEX-contaminated sites. © 2012 Elsevier Ltd.
Resumo:
New assays with HepG2 cells indicate that Indigo Carmine (IC), a dye that is widely used as additive in many food and pharmaceutical industries exhibited cytotoxic effects. This work describes the development of a bicomponent nanostructured Ti/TiO2/WO3 electrode prepared by template method and investigates its efficiency in a photoelectrocatalytic method by using visible light irradiation and applied potential of 1V. After 2h of treatment there are reduction of 97% discoloration, 62% of mineralization and formation of three byproducts assigned as: 2-amine-5-sulfo-benzoic acid, 2,3-dioxo-14-indole-5-sulfonic acid, and 2-amino-α-oxo-5-sulfo-benzeneacetic acid were identified by HPLC-MS/MS. But, cytotoxicity was completely removed after 120min of treatment. © 2013 Elsevier Ltd.
Resumo:
The polyphagous pests belonging to the genus Spodoptera are considered to be among the most important causes of damage and are widely distributed throughout the Americas'. Due to the extensive use of genetically modified plants containing Bacillus thuringiensis genes that code for insecticidal proteins, resistant insects may arise. To prevent the development of resistance, pyramided plants, which express multiple insecticidal proteins that act through distinct mode of actions, can be used. This study analyzed the mechanisms of action for the proteins Cry1Ia10 and Vip3Aa on neonatal Spodoptera frugiperda, Spodoptera albula, Spodoptera eridania and Spodoptera cosmioides larvae. The interactions of these toxins with receptors on the intestinal epithelial membrane were also analyzed by binding biotinylated toxins to brush border membrane vesicles (BBMVs) from the intestines of these insects. A putative receptor of approximately 65. kDa was found by ligand blotting in all of these species. In vitro competition assays using biotinylated proteins have indicated that Vip3Aa and Cry1Ia10 do not compete for the same receptor for S. frugiperda, S. albula and S. cosmioides and that Vip3Aa was more efficient than Cry1Ia10 when tested individually, by bioassays. A synergistic effect of the toxins in S. frugiperda, S. albula and S. cosmioides was observed when they were combined. However, in S. eridania, Cry1Ia10 and Vip3Aa might compete for the same receptor and through bioassays Cry1Ia10 was more efficient than Vip3Aa and showed an antagonistic effect when the proteins were combined. These results suggest that using these genes to develop pyramided plants may not prove effective in preventing the development of resistance in S. eridiana. © 2012 Elsevier Inc.
Resumo:
The leaf-cut ants are important agricultural pest, because they can cause intense defoliation in plants and destroy large areas cultivated. Although there are several works for the control of these insects by examining the toxicity of natural chemical compounds on various species of ants, few are focused on analyses of morphological changes caused in the affected organs. The aim of this study was to evaluate the effects of hydramethylnon on Atta sexdens rubropilosa workers through toxicological bioassays and morphological analysis of the post-pharyngeal glands, midgut, and Malpighian tubules of these ants. Hydramethylnon dissolved either in acetone (HA) or in a mixture of acetone and soy oil (HAO) was added to the artificial diet at a concentration of 200 μg/mL. The workers fed daily with the diet containing hydramethylnon showed higher mortality than the controls, especially when HAO was used. Moreover, light and electron microscopy revealed morphological alterations in the midgut and Malpighian tubules of workers treated with HA, whereas alterations of the post-pharyngeal glands were observed in the HAO-treated group. These results indicated that the presence of soy oil provided an alternate route for the ingestion of the formicide's active ingredient and corroborated previous studies that suggested a role for the post-pharyngeal glands in lipid metabolism. Our findings suggest that the oil may carry hydramethylnon to the gland lumen, resulting in lower quantity of the active ingredient in the intestinal lumen and Malpighian tubules that explains the lower degree of morphological alterations in these structures in the workers treated with HAO. These results may provide insight into the toxicological effects of hydramethylnon on leaf-cutting ants and the use of vegetable oil as an adjuvant in baits to control ants. © 2012 Elsevier Ltd.
Resumo:
The review purposes are to (1) evaluate the experimental evidence for adverse effects on reproduction and metabolism and (2) identify the current knowledge of analytical procedures, biochemistry and environmental aspects relating to organotins. Organotins are pollutants that are used as biocides in antifouling paints. They produce endocrine-disrupting effects in mollusks, such as imposex. In rodents, organotin exposure induces developmental and reproductive toxicity as well as alteration of metabolic homeostasis through its action as an obesogen. The adverse effects that appear in rodents have raised concerns about organotins' potential health risk to humans in relation to organotin exposure. At present, triorganotin, such as tributyltin, have been demonstrated to produce imposex, and mammalian reproductive and metabolic toxicity. For most mammals, triorganotin exposure predominantly occurs through the ingestion, and this compound can cross the placenta. With these risks in mind, it is important to improve our knowledge of organotins' effects on environmental health. © 2012 Elsevier Inc.
Resumo:
This study aimed to estimate the acute toxicity of teflubenzuron (1-(3,5-dichloro-2,4-difluorophenyl)-3-(2,6-difluorobenzoyl)urea) (TFB) for Daphnia magna, Lemna minor and Poecilia reticulata, in the absence and presence of sediment; evaluate the effect of sediment on the TFB bioavailability; and to classify this insecticide according to its environmental poisoning risk for agricultural and aquaculture uses. The tests of TFB acute toxicity were conducted in static system in a completely randomized design with increasing TFB concentrations, and a control group. The TFB has been classified according to the estimated values of EC50 and LC50 by its acute toxicity and environmental risk. The sediment significantly reduced toxicity and bioavailability of TFB in water column. Therefore, the insecticide can be classified as being highly toxic to Daphnia magna, which means the agricultural and aquacultural uses of TFB pose a high risk of environmental toxicity to non-target organisms. However, it was practically non-toxic to L. minor and P. reticulata. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The concern related to solid waste increases efforts to develop products based on biodegradable materials. At present, PLA has one of the highest potentials among biopolyesters, particularly for packaging. However, its application is limited in some fields. In order to optimize PLA properties, organo-modified montmorilonites have been extensively used to obtain nanocomposites. Although PLA nanocomposites studies are widely reported in the literature, there is still few information about the influence of organoclays on de biodegradation process, which is a relevant information, since one of the main purposals related to the final disposal of biopolymers as PLA is composting. Besides, in the last years some research has been conducted in order to evaluate the potential toxicity of montmorilonite, unmodified or organo-modified. Since the use of montmorilonite is expanding in different applications, human exposure and risk assessment are important issues to be investigated. In this context, this review intends to compile available information related to common organoclays used for PLA nanocomposites, its properties, biodegradation analysis and potential toxicity evaluation of nanocomposites, focused on montmorilonite as filler. Two issues of relevance were pointed out. The first is food safety and quality, and the second consideration is the environmental effect. © 2013 Springer Science+Business Media New York.
Resumo:
Hymenoptera venoms are constituted by a complex mixture of chemically or pharmacologically bioactive agents, such as phospholipases, hyaluronidases and mastoparans. Venoms can also contain substances that are able to inhibit and/or diminish the genotoxic or mutagenic action of other compounds that are capable of promoting damages in the genetic material. Thus, the present study aimed to assess the effect of the venom of Polybia paulista, a neotropical wasp, by assays with HepG2 cells maintained in culture. The cytotoxic potential of the wasp venom, assessed by the methyl thiazolyl tetrazolium assay (MTT assay), was tested for the concentrations of 10μg/mL, 5μg/mL and 1μg/mL. As these concentrations were not cytotoxic, they were used to evaluate the genotoxic (comet assay) and mutagenic potential (micronucleus test) of the venom. In this study, it was verified that these concentrations induced damages in the DNA of the exposed cells, and it was necessary to test lower concentrations until it was found those that were not considered genotoxic and mutagenic. The concentrations of 1ng/mL, 100pg/mL and 10pg/mL, which did not induce genotoxicity and mutagenicity, were used in four different treatments (post-treatment, pre-treatment, simultaneous treatment with and without incubation), in order to evaluate if these concentrations were able to inhibit or decrease the genotoxic and mutagenic action of methyl methanesulfonate (MMS). None of the concentrations was able to inhibit and/or decrease the MMS activity. The genotoxic and mutagenic activity of the venom of P. paulista could be caused by the action of phospholipase, mastoparan and hyaluronidase, which are able to disrupt the cell membrane and thereby interact with the genetic material of the cells or even facilitate the entrance of other compounds of the venom that can act on the DNA. Another possible explanation for the genotoxicity and mutagenicity of the venom can be the presence of substances able to trigger inflammatory process and, consequently, generate oxygen reactive species that can interact with the DNA of the exposed cells. © 2013 Elsevier Ltd.
Resumo:
Ethnopharmacological relevance: Psidium cattleianum Sabine is extensively used in Brazilian traditional medicine to treat several diseases including painful disorders. Aim of the study to investigate the toxicity and the possible analgesic activities of the hydroalcoholic extract from the leaves of Psidium cattleianum Sabine (ELPCS), to support its use in folk medicine. To screen the major phytochemical constituents of this extract and evaluate their antioxidant activity. Materials and methods: ELPCS was assessed for its antioxidant activity using the DPPH model. Its analgesic activity was examined using mouse models of acetic acid-induced writhing and hot plate paw licking models. The major phytochemical constituents of the extract were screened; their toxicity on LLC-MK2 mammalian cells was evaluated. Results: ELPCS exhibited significant peripheral analgesic activity at doses of 60, 80, 100, 200 and 400 mg/kg in mice, but it did not display central analgesic activity and not was toxic to LLC-MK2 cell (LD 50>400 μg/mL). The extract exhibited free radical scavenging activity as evidenced by IC 50 values (15.9 μg/mL) obtained by the DPPH method. Phytochemical screening detected flavonoids, saponins, cardiac glycosides, anthraquinones, and tannins. Conclusions: The results of the experimental studies proved the analgesic activity of ELPCS and supported the traditional use of this plant. © 2013 Elsevier B.V. All rights reserved.