203 resultados para Melatonin receptors
Resumo:
The modulatory effects of melatonin (MLT) on maternal and fetal macrophages in diabetic rats and the repercussion of maternal hyperglycemia on fetus-placenta parameters were studied. This was achieved by determining maternal and fetal blood glucose, weight and superoxide release by macrophages. Placental weight, protein, DNA and RNA concentration were also verified. Superoxide levels in macrophages isolated from pregnant healthy rats were higher than those obtained from diabetic animals. Melatonin increased significantly in the macrophages of control animals (18.7 ± 2.8 with MLT compared to 14.2 ± 1.6 without MLT) but decreased with melatonin stimulation in diabetic rats (8.8 ± 1.4 with MLT compared to 12.9 ± 2.1 without MLT). Melatonin significantly decreased superoxide levels in newborns of diabetic mothers (7.3 ± 3.4) compared to those of healthy (14.6 ± 3.5) mothers. Blood glucose levels were significantly higher (p<0.05) in newborn rats of diabetic mothers (108.3 ± 7.8) compared to blood glucose levels in newborn control rats (81.2 ± 10.7). Body weight was significantly higher (p <0.05) in the offspring of rats with alloxan-induced diabetes. No statistical difference (p> 0.05) was observed in the placenta weight, total protein concentration and DNA of rats. The RNA concentration was significantly lower (p <0.05) in the placentas of rats with alloxan-induced diabetes (156.1 ± 71.8), when compared to the concentration of RNA in the placentas of control rats (239.5 ± 77.3). In conclusion, maternal hyperglycemia modified the fetus-placental parameters and melatonin modulated the macrophages activation in maternal and fetal diabetic rats.
Resumo:
The pineal gland, the gland that translates darkness into an endocrine signal by releasing melatonin at night, is now considered a key player in the mounting of an innate immune response. Tumor necrosis factor (TNF), the first pro-inflammatory cytokine to be released by an inflammatory response, suppresses the translation of the key enzyme of melatonin synthesis (arylalkylamine-N-acetyltransferase, Aanat). Here, we show that TNF receptors of the subtype 1 (TNF-R1) are expressed by astrocytes, microglia, and pinealocytes. We also show that the TNF signaling reduces the level of inhibitory nuclear factor kappa B protein subtype A (NFKBIA), leading to the nuclear translocation of two NFKB dimers, p50/p50, and p50/RelA. The lack of a transactivating domain in the p50/p50 dimer suggests that this dimer is responsible for the repression of Aanat transcription. Meanwhile, p50/RelA promotes the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide, which inhibits adrenergically induced melatonin production. Together, these data provide a mechanistic basis for considering pinealocytes a target ofTNF and reinforce the idea that the suppression of pineal melatonin is one of the mechanisms involved in mounting an innate immune response. © 2011 Carvalho-Sousa, da Silveira Cruz-Machado, Tamura, Fernandes, Pinato, Muxel, Cecon and Markus.
Resumo:
Background and Purpose: The circadian rhythm of melatonin in saliva or plasma, or of the melatonin metabolite 6-sulfatoxymelatonin (a6MTs) in urine, is a defining feature of suprachiasmatic nucleus (SCN) function, the body's endogenous oscillatory pacemaker. The primary objective of this review is to ascertain the clinical benefits and limitations of current methodologies employed for detection and quantification of melatonin in biological fluids and tissues. Data Identification: A search of the English-language literature (Medline) and a systematic review of published articles were carried out. Study Selection: Articles that specified both the methodology for quantifying melatonin and indicated the clinical purpose were chosen for inclusion in the review. Data Extraction: The authors critically evaluated the methodological issues associated with various tools and techniques (e.g. standards, protocols, and procedures). Results of Data Synthesis: Melatonin measurements are useful for evaluating problems related to the onset or offset of sleep and for assessing phase delays or advances of rhythms in entrained individuals. They have also become an important tool for psychiatric diagnosis, their use being recommended for phase typing in patients suffering from sleep and mood disorders. Additionally, there has been a continuous interest in the use of melatonin as a marker for neoplasms of the pineal region. Melatonin decreases such as found with aging are or post pinealectomy can cause alterations in the sleep/wake cycle. The development of sensitive and selective methods for the precise detection of melatonin in tissues and fluids has increasingly been shown to have direct relevance for clinical decision making. Conclusions: Due to melatonin's low concentration, as well as the coexistence of numerous other compounds in the blood, the routine determination of melatonin has been an analytical challenge. The available evidence indicates however that these challenges can be overcome and consequently that evaluation of melatonin's presence and activity can be an accessible and useful tool for clinical diagnosis. © Springer-Verlag 2010.
Resumo:
The Mongolian gerbil (Meriones unguiculatus, Gerbilinae: Muridae) is useful for prostate studies, because both males and females spontaneously develop prostatic disorders with age. Estrogens regulate prostate homeostasis via two estrogen receptors, ER alpha (ESR1) and ER beta (ESR2), but the cellular distribution and regulation of these receptors in the gerbil prostate has not been described. Both receptors were localized by immunohistochemistry in the ventral prostate of intact male and female gerbils, in males 7 and 21 days after castration, and in females treated with testosterone for 7 and 21 days. In male and female adult gerbils, ER alpha was detected mainly in prostatic stromal cells, whereas ER beta was present mostly in secretory and basal cells. More ER alpha-positive stromal cells were found in females than in males, as was a reduction toward the male value in females treated with testosterone. Castration did not alter ER alpha expression. Testosterone was necessary for maintenance of ER beta in the male prostate epithelium: ER beta expression declined markedly in prostates of males older than 1 yr, and castration of 4-mo-old males caused a reduction in ER beta to levels seen in 1-yr-old males. Because ER beta is an antiproliferative receptor, its loss with age may predispose the aging gerbil to proliferative diseases of the prostate. © 2013 by the Society for the Study of Reproduction, Inc.
Resumo:
Background: Ethanol (EtOH) alters the all-trans-retinoic acid (ATRA) levels in some tissues. Retinol and ATRA are essential for cell proliferation, differentiation, and maintenance of prostate homeostasis. It has been suggested that disturbances in retinol/ATRA concentration as well as in the expression of retinoic acid receptors (RARs) contribute to benign prostate hyperplasia and prostate cancer. This study aimed to evaluate whether EtOH consumption is able to alter retinol and ATRA levels in the plasma and prostate tissue as well as the expression of RARs, cell proliferation, and apoptosis index. Methods: All animals were divided into 4 groups (n = 10/group). UChA: rats fed 10% (v/v) EtOH ad libitum; UChACo: EtOH-naïve rats without access to EtOH; UChB: rats fed 10% (v/v) EtOH ad libitum; UChBCo: EtOH-naïve rats without access to EtOH. Animals were euthanized by decapitation after 60 days of EtOH consumption for high-performance liquid chromatography and light microscopy analysis. Results: EtOH reduced plasma retinol concentration in both UChA and UChB groups, while the retinol concentration was not significantly different in prostate tissue. Conversely, plasma and prostate ATRA levels increased in UChB group compared with controls, beyond the up-regulation of RARβ and -γ in dorsal prostate lobe. Additionally, no alteration was found in cell proliferation and apoptosis index involving dorsal and lateral prostate lobe. Conclusions: We conclude that EtOH alters the plasma retinol concentrations proportionally to the amount of EtOH consumed. Moreover, high EtOH consumption increases the concentration of ATRA in plasma/prostate tissue and especially induces the RARβ and RARγ in the dorsal prostate lobe. EtOH consumption and increased ATRA levels were not associated with cell proliferation and apoptosis in the prostate. © 2012 by the Research Society on Alcoholism.
Resumo:
In vertebrate species, testosterone seems to inhibit spermatogonial differentiation and proliferation. However, this androgen can also be converted, via aromatase, into estrogen which stimulates spermatogonial differentiation and mitotic activity. During seasonal spermatogenesis of adult bullfrogs Lithobates catesbeianus, primordial germ cells (PGCs) show enhanced testosterone cytoplasm immunoexpression in winter; however, in summer, weak or no testosterone immunolabelling was observed. The aim of this study was to confirm if PGCs express stem cell markers-alkaline phosphatase (AP) activity and GFRα1 (glial-cell-line-derived neurotrophic factor)-and verify whether testosterone is maintained in these cells by androgen receptors (ARs) and/or sex hormone-binding globulin (SHBG) in winter. Furthermore, regarding the possibility that testosterone is converted into estrogen by PGCs in summer, the immunoexpression of estrogen receptor (ER)β was investigated. Bullfrog testes were collected in winter and in summer and were embedded in glycol methacrylate for morphological analyses or in paraffin for the histochemical detection of AP activity. GFRα1, AR, SHBG and ERβ expression were detected by Western blot and immunohistochemical analyses. The expression of AP activity and GFRα1 in the PGCs suggest that these cells are spermatogonial stem cells. In winter, the cytoplasmic immunoexpression of ARs and SHBG in the PGCs indicates that testosterone is maintained by these proteins in these cells. The cytoplasmic immunoexpression of ERβ, in summer, also points to an ER-mediated action of estrogen in PGCs. The results indicate a participation of testosterone and estrogen in the control of the primordial spermatogonia during the seasonal spermatogenesis of L. catesbeianus. © 2012 S. Karger AG, Basel.
Resumo:
Objectives: The aim of this study was to compare cone beam CT (CBCT) in a small field of view (FOV) with a solid-state sensor and a photostimulable phosphor plate system for detection of cavitated approximal surfaces. Methods: 257 non-filled approximal surfaces from human permanent premolars and molars were recorded by two intraoral digital receptors, a storage phosphor plate (Digora Optime, Soredex) and a solid-state CMOS sensor (Digora Toto, Soredex), and scanned in a cone beam CT unit (3D Accuitomo FPD80, Morita) with a FOV of 4 cm and a voxel size of 0.08 mm. Image sections were carried out in the axial and mesiodistal tooth planes. Six observers recorded surface cavitation in all images. Validation of the true absence or presence of surface cavitation was performed by inspecting the surfaces under strong light with the naked eye. Differences in sensitivity, specificity and agreement were estimated by analysing the binary data in a generalized linear model using an identity link function. Results: A significantly higher sensitivity was obtained by all observers with CBCT (p,0.001), which was not compromised by a lower specificity. Therefore, a significantly higher overall agreement was obtained with CBCT (p,0.001). There were no significant differences between the Digora Optime phosphor plate system and the Digora Toto CMOS sensor for any parameter. Conclusions: CBCT was much more accurate in the detection of surface cavitation in approximal surfaces than intraoral receptors. The differences are interpreted as clinically significant. A CBCT examination performed for other reasons should also be assessed for approximal surface cavities in teeth without restorations. © 2013 The British Institute of Radiology.
VEGF-C expression in oral cancer by neurotransmitter-induced activation of beta-adrenergic receptors
Resumo:
The aim of this study was to investigate the expression of vascular endothelial growth factor type C (VEGF-C) in oral squamous cell carcinoma (OSCC) cell lines through norepinephrine-induced activation of beta-adrenergic receptors. Human OSCC cell lines (SCC-9 and SCC-25) expressing beta-adrenergic receptors were stimulated with different concentrations of norepinephrine (0.1, 1, and 10 μM) and 1 μM of propranolol, and analyzed after 1, 6, and 24 h. VEGF-C gene expression and VEGF-C production in the cell supernatant were evaluated by real-time PCR and by ELISA, respectively. The results showed that beta-adrenergic receptor stimulation by different concentrations of norepinephrine or blocking by propranolol did not markedly alter VEGF-C expression by SCC-9 and SCC-25 cells. VEGF-C protein levels produced by oral malignant cell lines after stimulation with different norepinephrine concentrations or blocking with propranolol was statistically similar (p > 0.05) to those of the control group (nonstimulated OSCC cell lines). Our findings suggest that stimulation of beta-adrenergic receptors by means of norepinephrine does not seem to modulate the VEGF-C expression in OSCC cell lines. These findings reinforce the need for further studies in order to understand the responsiveness of oral cancer to beta-adrenergic receptor stimulation or blockage, especially with regard to VEGF-C production. © 2012 International Society of Oncology and BioMarkers (ISOBM).
Resumo:
Bullfrog stem spermatogonia, also named primordial germ cells (PGCs), show strong testosterone immunolabeling in winter, but no or weak testosterone immunoexpression in summer. Thus, the role of testosterone in these cells needs to be clarified. In this study, we proposed to evaluate whether PGCs express aromatase and estrogen receptors, and verify a possible role of estrogen in PGCs seasonal proliferation. Testes of male adult bullfrogs, collected in winter (WG) and summer (SG), were fixed and embedded in historesin, for quantitative analysis, or paraffin for immunohistochemistry (IHC). The number of haematoxylin/eosin stained PGCs/lobular area was obtained. Proliferating cell nuclear antigen (PCNA), aromatase, estrogen receptor β (ERβ) and PCNA/ERβ double immunolabeling were detected by IHC. The number of PCNA-positive PGCs and the histological score (HSCORE) of aromatase and ERβ immunolabeled PGCs were obtained. Although the number of PGCs increased significantly in WG, a high number of PCNA-positive PGCs was observed in summer. Moreover, aromatase and ERβ HSCORE was higher in SG than WG. The results indicate that PGCs express a seasonal proliferative activity; the low mitotic activity in winter is related to the maximal limit of germ cells which can be supported in the large lobules. In SG, the increased ERβ and aromatase HSCORE suggests that testosterone is converted into estrogen from winter to summer. Moreover, the parallelism between the high PGCs mitotic activity and ERβ immunoexpression suggest a participation of estrogen in the control of the PGCs seasonal proliferative activity which guarantee the formation of new germ cysts from summer to next autumn. © 2012 Elsevier Inc.
Resumo:
Aims: To evaluate the reliability of fine needle aspirate cell blocks in the assessment of oestrogen receptor (ER), progesterone receptor (PR) and HER-2/neu proteins by immunohistochemistry in comparison with surgical specimens. Materials and methods: This is a retrospective study of 62 cases of breast carcinoma diagnosed by fine needle aspiration cytology (FNAC) and confirmed using the surgical specimen. Immunohistochemical tests were performed to assess the presence of oestrogen receptor (ER), progesterone receptor (PR) and HER-2/neu proteins in cell blocks and the corresponding surgical specimens. The cell block method used alcohol prior to formalin fixation. Cases with 10% or more stained cells were considered positive for ER and PR. Positivity for HER-2/neu was assessed on a scale of 0-3+. The criterion for positivity was a score of 3+. Results: Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of the cell blocks in the investigation of ER, PR and HER-2/neu protein (3+) were (%): ER, 92.7, 85.7, 92.7, 85.7 and 90.3; PR, 92.7, 94.7, 97.4, 87.0 and 93.5; HER-2/neu, 70.0, 100.0, 100.0, 94.5 and 95.2. Discrepancies were seen in cell blocks in the 1+ and 2+ HER-2/neu staining scores: two of 12 cases scoring 2+ and one case of 26 scoring 1+ on cell blocks scored 3+ on surgical specimens. The correlation index between cell block and corresponding surgical specimen varied from 90% to 94%. Conclusion: Cell blocks provide a useful method of assessing ER, PR and HER-2/neu, mainly for inoperable and recurrent cases, but consideration should be given to carrying out FISH analysis on 1+ as well as 2+ HER-2/neu results. © 2012 Blackwell Publishing Ltd.
Antioxidant Effect of Melatonin on the Functional Activity of Colostral Phagocytes in Diabetic Women
Resumo:
Melatonin is involved in a number of physiological and oxidative processes, including functional regulation in human milk. The present study investigated the mechanisms of action of melatonin and its effects on the functional activity of colostral phagocytes in diabetic women. Colostrum samples were collected from normoglycemic (N = 38) and diabetic (N = 38) women. We determined melatonin concentration, superoxide release, bactericidal activity and intracellular Ca2+ release by colostral phagocytes treated or not with 8-(Diethylamino) octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8) and incubated with melatonin and its precursor (N-acetyl-serotonin-NAS), antagonist (luzindole) and agonist (chloromelatonin-CMLT). Melatonin concentration was higher in colostrum samples from hyperglycemic than normoglycemic mothers. Melatonin stimulated superoxide release by colostral phagocytes from normoglycemic but not hyperglycemic women. NAS increased superoxide, irrespective of glycemic status, whereas CMTL increased superoxide only in cells from the normoglycemic group. Phagocytic activity in colostrum increased significantly in the presence of melatonin, NAS and CMLT, irrespective of glycemic status. The bactericidal activity of colostral phagocytes against enterophatogenic Escherichia coli (EPEC) increased in the presence of melatonin or NAS in the normoglycemic group, but not in the hyperglycemic group. Luzindole blocked melatonin action on colostrum phagocytes. Phagocytes from the normoglycemic group treated with melatonin exhibited an increase in intracellular Ca2+ release. Phagocytes treated with TMB-8 (intracellular Ca2+ inhibitor) decreased superoxide, bactericidal activity and intracellular Ca2+ release in both groups. The results obtained suggest an interactive effect of glucose metabolism and melatonin on colostral phagocytes. In colostral phagocytes from normoglycemic mothers, melatonin likely increases the ability of colostrum to protect against EPEC and other infections. In diabetic mothers, because maternal hyperglycemia modifies the functional activity of colostrum phagocytes, melatonin effects are likely limited to anti-inflammatory processes, with low superoxide release and bactericidal activity. © 2013 Morceli et al.
Resumo:
Background: The current treatments for anxiety disorders and depression have multiple adverse effects in addition to a delayed onset of action, which has prompted efforts to find new substances with potential activity in these disorders. Citrus aurantium was chosen based on ethnopharmacological data because traditional medicine refers to the Citrus genus as useful in diminishing the symptoms of anxiety or insomnia, and C. aurantium has more recently been proposed as an adjuvant for antidepressants. In the present work, we investigated the biological activity underlying the anxiolytic and antidepressant effects of C. aurantium essential oil (EO), the putative mechanism of the anxiolytic-like effect, and the neurochemical changes in specific brain structures of mice after acute treatment. We also monitored the mice for possible signs of toxicity after a 14-day treatment.Methods: The anxiolytic-like activity of the EO was investigated in a light/dark box, and the antidepressant activity was investigated in a forced swim test. Flumazenil, a competitive antagonist of benzodiazepine binding, and the selective 5-HT1A receptor antagonist WAY100635 were used in the experimental procedures to determine the mechanism of action of the EO. To exclude false positive results due to motor impairment, the mice were submitted to the rotarod test.Results: The data suggest that the anxiolytic-like activity observed in the light/dark box procedure after acute (5 mg/kg) or 14-day repeated (1 mg/kg/day) dosing was mediated by the serotonergic system (5-HT1A receptors). Acute treatment with the EO showed no activity in the forced swim test, which is sensitive to antidepressants. A neurochemical evaluation showed no alterations in neurotransmitter levels in the cortex, the striatum, the pons, and the hypothalamus. Furthermore, no locomotor impairment or signs of toxicity or biochemical changes, except a reduction in cholesterol levels, were observed after treatment with the EO.Conclusion: This work contributes to a better understanding of the biological activity of C. aurantium EO by characterizing the mechanism of action underlying its anxiolytic-like activity. © 2013 Costa et al; licensee BioMed Central Ltd.
Resumo:
Background: Chronic inflammation and gastric carcinogenesis show a close association, so gene polymorphisms that modify the intensity of the inflammatory response may contribute to variations in gastric cancer risk. Aims: The purpose of this study was to investigate the combined effect of the pro- and anti-inflammatory cytokines and toll-like receptors polymorphisms on the chronic gastritis and gastric cancer risk in a Brazilian population sample. Methods: We evaluated 669 DNA samples (200 of gastric cancer [GC], 229 of chronic gastritis [CG], and 240 of healthy individuals [C]). Ten polymorphisms were genotyped: IL-1RN and TLR2 -196 to -174 del using the allele-specific PCR method and TNF-A (rs1800629; rs1799724), TNF-B (rs909253), IL-8 (rs4073; rs2227532), IL-10 (rs1800872) and TLR4 (rs4986790; rs4986791) using PCR-RFLP. Results: Polymorphisms TNF-A-308G/A, IL-8-251A/T, TNF-B + 252A/G and TLR4 + 1196C/T were not associated with risk of any gastric lesion. However, an association with increased risk for GC was observed for polymorphisms IL-1RNL/2 (p < 0.001), TNF-A-857C/T (p = 0.022), IL-8-845T/C (p < 0.001), IL-10-592C/A (p < 0.001), TLR2ins/del (p < 0.001), and TLR4 + 896A/G (p = 0.033). In CG, an association was observed only with polymorphisms IL-1RNL/2 and IL-10-592A/C (p < 0.001 for both). A combined analysis of these six polymorphisms associated with GC revealed a profile with two to four combined genotypes which confer a higher risk of gastric carcinogenesis, with an OR increased 2.95-fold to 50.4-fold, highlighting the combinations IL-1RN2/TNF-A-857T/IL-8-845C, IL-1RN2/IL-8-845C/TLR2del, IL-1RN2/IL-10-592A/TLR4 + 896G, IL-10-592A/TLR2del/ TLR4 + 896G, and IL-1RN2/TNFA-857T/IL8-845C/TLR2del. Conclusions: Our findings evidenced that the combined effect of polymorphisms in genes involved in the inflammatory process may potentiate the risk of gastric cancer, thus emphasizing the importance of evaluating multiple polymorphisms together. © 2012 Springer Science+Business Media New York.
Resumo:
Aim: Central chemoreceptors are important to detect changes of CO2/H+, and the Locus coeruleus (LC) is one of the many putative central chemoreceptor sites. Here, we studied the contribution of LC glutamatergic receptors on ventilatory, cardiovascular and thermal responses to hypercapnia. Methods: To this end, we determined pulmonary ventilation (VE), body temperatures (Tb), mean arterial pressure (MAP) and heart rate (HR) of male Wistar rats before and after unilateral microinjection of kynurenic acid (KY, an ionotropic glutamate receptor antagonist, 10 nmol/0.1 μL) or α-methyl-4-carboxyphenylglycine (MCPG, a metabotropic glutamate receptor antagonist, 10 nmol/0.1 μL) into the LC, followed by 60 min of air breathing or hypercapnia exposure (7% CO2). Results: Ventilatory response to hypercapnia was higher in animals treated with KY intra-LC (1918.7 ± 275.4) compared with the control group (1057.8 ± 213.9, P < 0.01). However, the MCPG treatment within the LC had no effect on the hypercapnia-induced hyperpnea. The cardiovascular and thermal controls were not affected by hypercapnia or by the injection of KY and MCPG in the LC. Conclusion: These data suggest that glutamate acting on ionotropic, but not metabotropic, receptors in the LC exerts an inhibitory modulation of hypercapnia-induced hyperpnea. © 2013 Scandinavian Physiological Society.
Resumo:
Background and Purpose Bone resorption induced by interleukin-1β (IL-1β) and tumour necrosis factor (TNF-α) is synergistically potentiated by kinins, partially due to enhanced kinin receptor expression. Inflammation-induced bone resorption can be impaired by IL-4 and IL-13. The aim was to investigate if expression of B1 and B2 kinin receptors can be affected by IL-4 and IL-13. Experimental Approach We examined effects in a human osteoblastic cell line (MG-63), primary human gingival fibroblasts and mouse bones by IL-4 and IL-13 on mRNA and protein expression of the B1 and B2 kinin receptors. We also examined the role of STAT6 by RNA interference and using Stat6-/- mice. Key Results IL-4 and IL-13 decreased the mRNA expression of B1 and B2 kinin receptors induced by either IL-1β or TNF-α in MG-63 cells, intact mouse calvarial bones or primary human gingival fibroblasts. The burst of intracellular calcium induced by either bradykinin (B2 agonist) or des-Arg10-Lys-bradykinin (B1 agonist) in gingival fibroblasts pretreated with IL-1β was impaired by IL-4. Similarly, the increased binding of B1 and B2 ligands induced by IL-1β was decreased by IL-4. In calvarial bones from Stat6-deficient mice, and in fibroblasts in which STAT6 was knocked down by siRNA, the effect of IL-4 was decreased. Conclusions and Implications These data show, for the first time, that IL-4 and IL-13 decrease kinin receptors in a STAT6-dependent mechanism, which can be one important mechanism by which these cytokines exert their anti-inflammatory effects and impair bone resorption. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.