146 resultados para Host plant
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This review deals with a comparative analysis of seven genome sequences from plant-associated bacteria. These are the genomes of Agrobacterium tumefaciens, Mesorhizobium loti, Sinorhizobium meliloti, Xanthomonas campestris pv campestris, Xanthomonas axonopodis pv citri, Xylella fastidiosa, and Ralstonia solanacearum. Genome structure and the metabolism pathways available highlight the compromise between the genome size and lifestyle. Despite the recognized importance of the type III secretion system in controlling host compatibility, its presence is not universal in all necrogenic pathogens. Hemolysins, hemagglutinins, and some adhesins, previously reported only for mammalian pathogens, are present in most organisms discussed. Different numbers and combinations of cell wall degrading enzymes and genes to overcome the oxidative burst generally induced by the plant host are characterized in these genomes. A total of 19 genes not involved in housekeeping functions were found common to all these bacteria.
Resumo:
The leaf beetle Metriona elatior from Brazil-Argentina was screened in the Florida (USA) State quarantine facility as a potential biological control agent of tropical soda apple, Solanum viarum, a recently arrived weed species. Multiple-choice host-specificity tests were conducted in small cages (60 cm x 60 cm x 60 cm) using 95 plant species in 29 families. Adults fed heavily on the main target weed (S. viarum), and on turkeyberry, Solanum torvum (noxious weed of Asiatic origin); fed moderately on red soda apple, Solanum capsicoides (weed of South American origin), and eggplant, Solanum melongena (economic crop); and fed lightly on aquatic soda apple, Solanum tampicense (weed of Mexican-Caribbean-Central American origin), and on silverleaf nightshade, Solanum elaeagnifolium (native weed widely distributed). M. elatior adults laid 84 to 97% of their egg masses on S. viarum, and 3 to 16% on S. melongena. Non-choice host-specificity tests were also conducted in quarantine in which M. elatior adults and neonate larvae were exposed to 17 and 19 plant species, respectively. Tests with the neonates indicate that this insect was able to complete its development on S. viarum, S. torvum, S. melongena, and S. capsicoides. Although some adult feeding and oviposition occurred on S. melongena in quarantine on potted plants in small cages, no feeding or oviposition by M. elatior was observed in field experiments conducted in Brazil. Surveys in unsprayed S. melongena fields in Argentina and Brazil indicated that M. elatior is not a pest of S. melongena in South America. The evidence obtained from the South-American field surveys, Brazil open-field experiments, and Florida quarantine host specificity tests indicate that M. elatior causes significant feeding damage to S. viarum, and does not represent a threat to S. melongena crops in the USA. Therefore an application for permission to release M. elatior against S. viarum in the USA was submitted in October 1998.
Resumo:
Xylella fastidiosa is a phytopathogen that causes diseases in different plant species. The development of disease symptoms is associated to the blockage of the xylem vessels caused by biofilm formation. In this study, we evaluated the sensitivity of biofilm and planktonic cells to copper, one of the most important antimicrobial agents used in agriculture. We measured the exopolysaccharides (EPS) content in biofilm and planktonic cells and used real-time reverse transcription polymerase chain reaction to evaluate the expression of the genes encoding proteins involved in cation/multidrug extrusion (acrA/B, mexE/czcA, and metI) and others associated with different copper resistance mechanisms (copB, cutA1, cutA2, and cutC) in the X. fastidiosa biofilm formed in two different media. We confirmed that biofilms are less susceptible to copper than planktonic cells. The amount of EPS seems to be directly related to the resistance and it varies according to the media where the cells are grown. The same was observed for gene expression. Nevertheless, some genes seem to have a greater importance in biofilm cells resistance to copper. Our results suggest a synergistic effect between diffusion barriers and other mechanisms associated with bacterial resistance in this phytopathogen. These mechanisms are important for a bacterium that is constantly under stress conditions in the host.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
1. Although several species of Peucetia (Oxyopidae) live strictly in association with plants bearing glandular trichomes worldwide, to date little is known about whether these associations are mutualistic.2. In this study we manipulated the presence of Peucetia flava on the glandular plant Rhynchanthera dichotoma in the rainy and post-rain season, to test the strength of its effects on leaf, bud, and flower damage and plant reproductive output. In addition, we ran independent field experiments to examine whether these sticky structures improve spider fidelity to plants.3. Peucetia suppressed some species of foliar phytophages, but not others. Although spiders have reduced levels of leaf herbivory, this phenomenon was temporally conditional, i.e. occurred only in the post-rain but not in the rainy season. Floral herbivory was also reduced in the presence of spiders, but these predators did not affect plant fitness components.4. Plants that had their glandular trichomes removed retained fewer insects than those bearing such structures. Spiders remained longer on plants with glandular trichomes than on plants in which these structures had been removed. Isotopic analyses showed that spiders that fed on live and dead labelled flies adhered to the glandular hairs in similar proportions.5. Spiders incurred no costs to the plants, but can potentially increase individual plant fitness by reducing damage to reproductive tissues. Temporal conditionality probably occurred because plant productivity exceeded herbivore consumption, thus dampening top-down effects. Specialisation to live on glandular plants may have favoured scavenging behaviour in Peucetia, possibly an adaptation to periods of food scarcity.
Resumo:
The aim of the present study was to analyse the genetic and pathogenic variability of Colletotrichum spp. isolates from various organs and cultivars of mango with anthracnose symptoms, collected from different municipalities of São Paulo State, Brazil. Colletotrichum gloeosporioides isolates from symptomless citrus leaves and C. acutatum isolates from citrus flowers with post-bloom fruit drop symptoms were included as controls. Sequencing of the ITS region allowed the identification of 183 C. gloeosporioides isolates from mango; only one isolate was identified as C. acutatum. amova analysis of ITS sequences showed larger genetic variability among isolates from the same municipality than among those from different populations. fAFLP markers indicated high levels of genetic variability among the C. gloeosporioides isolates from mango and no correlation between genetic variability and isolate source. Only one C. gloeosporioides mango isolate had the same genotype as the C. gloeosporioides isolates from citrus leaves, as determined by ITS sequencing and fAFLP analysis. Pathogenicity tests revealed that C. gloeosporioides and C. acutatum isolates from either mango or citrus can cause anthracnose symptoms on leaves of mango cvs Palmer and Tommy Atkins and blossom blight symptoms in citrus flowers. These outcomes indicate a lack of host specificity of the Colletotrichum species and suggest the possibility of host migration. © 2012 British Society for Plant Pathology.
Resumo:
O trabalho teve por objetivo determinar, em casa-de-vegetação, a densidade adequada de adultos, a idade ideal das plantas e a distribuição vertical de ovos nas diferentes partes da planta, visando à realização de estudos de resistência e à melhoria das práticas de manejo de Spodoptera frugiperda em algodoeiro. Os experimentos de oviposição de S. frugiperda em relação à densidade de adultos, relação entre plantas de algodoeiro e oviposição de S. frugiperda e não preferência para oviposição de S. frugiperda em variedades de algodoeiro foram realizados com plantas da variedade de algodoeiro BRS Ita 90. A não preferência (antixenose) para oviposição foi acompanhada nas variedades FiberMax 966, FiberMax 977, DeltaOpal, DeltaPenta, Acala 90, Coodetec 408, Coodetec 409, Coodetec 410, BRS Cedro, BRS Ipê, BRS Aroeira, IPR 96, IPR 20, BRS Araçá, IAC 24 e BRS Ita 90. Concluiu-se que S. frugiperda prefere ovipositar em plantas com cerca de 60 dias de idade, na superfície inferior das folhas situadas no terço superior dos testes de plantas sob condições de estufa. Uma densidade de, pelo menos, três pares de adultos S. frugiperda por planta foi suficiente para realizar testes de não preferência para oviposição em casa de vegetação. As variedades Coodetec 408, BRS Aroeira, BRS Araçá, BRS Ita 90 e DeltaPenta apresentaram resistência do tipo não preferência para oviposição de S. frugiperda. Em regiões com altas infestações de S. frugiperda, seria prudente para o cultivo utilizar a variedade de algodão BRS Ita 90.
Resumo:
Xylella fastidiosa is a fastidious, xylem-limited bacterium that causes a range of economically important plant diseases. Here we report the complete genome sequence of X. fastidiosa clone 9a5c, which causes citrus variegated chlorosis - a serious disease of orange trees. The genome comprises a 52.7% GC-rich 2,679,305-base-pair (bp) circular chromosome and 'two plasmids of 51,158 bp and 1,285 bp. We can assign putative functions to47% of the 2,904 predicted coding regions. Efficient metabolic functions are predicted, with sugars as the principal energy and carbon source, supporting existence in the nutrient-poor xylem sap. The mechanisms associated with pathogenicity and virulence involve toxins, antibiotics and ion sequestration systems, as well as bacterium-bacterium and bacterium-host interactions mediated by a range of proteins. Orthologues of some of these proteins have only been identified in animal and human pathogens; their presence in X. fastidiosa indicates that the molecular basis for bacterial pathogenicity is both conserved and independent of host. At least 83 genes are bacteriophage-derived and include virulence-associated genes from other bacteria, providing direct evidence of phage-mediated horizontal gene transfer.