149 resultados para Growth traits


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Associations between four microsatellite markers on chromosome 11 and five on chromosome 13 with performance, carcass and organs traits were investigated in chickens using a least-squares approach applied to single-marker analysis. Three hundred and twenty seven F 2 chickens from the EMBRAPA broiler×layer experimental population were evaluated for 16 traits: five related to performance, five to carcass and five to organs, plus the hematocrit. Two significance thresholds were considered: p<0.05 and p<0.0056; the last value resulted from the application of a multiple tests analyses correction. On chromosome 11, six associations (p<0.05) between the genotypes of two markers with four growth related and one carcass trait were found. On chromosome 13, six associations (p<0.05) between marker genotypes and three performance traits, eight associations (p<0.05) between marker genotypes and two carcass traits and eight associations (p<0.05) between marker genotypes and four organs traits were detected. These associations were indications of the presence of quantitative trait loci on these chromosomes, especially on chromosome 13. In this chromosome, the strongest evidence was for body weight at 41 days of age and percentage of carcass because the p-values exceeded the multiple test threshold (p<0.0056), but also for breast percentage and heart weight due to the large number of markers (four) on chromosome 13 associated with each one of these traits. These associations should be further investigated by interval mapping analyses to find QTL positions and to allow the estimation of their effects. © Asian Network for Scientific Information, 2009.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic correlations of selection indices and the traits considered in these indices with mature weight (MW) of Nelore females and correlated responses were estimated to determine whether current selection practices will result in an undesired correlated response in MW. Genetic trends for weaning and yearling indices and MW were also estimated. Data from 612,244 Nelore animals born between 1984 and 2010, belonging to different beef cattle evaluation programs from Brazil and Paraguay, were used. The following traits were studied: weaning conformation (WC), weaning precocity (WP), weaning muscling (WM), yearling conformation (YC), yearling precocity (YP), yearling muscling (YM), weaning and yearling indices, BW gain from birth to weaning (BWG), postweaning BW gain (PWG), scrotal circumference (SC), and MW. The variance and covariance components were estimated by Bayesian inference in a multitrait analysis, including all traits in the same analysis, using a nonlinear (threshold) animal model for visual scores and a linear animal model for the other traits. The mean direct heritabilities were 0.21 ± 0.007 (WC), 0.22 ± 0.007 (WP), 0.20 ± 0.007 (WM), 0.43 ± 0.005 (YC), 0.40 ± 0.005 (YP), 0.40 ± 0.005 (YM), 0.17 ± 0.003 (BWG), 0.21 ± 0.004 (PWG), 0.32 ± 0.001 (SC), and 0.44 ± 0.018 (MW). The genetic correlations between MW and weaning and yearling indices were positive and of medium magnitude (0.30 ± 0.01 and 0.31 ± 0.01, respectively). The genetic changes in weaning index, yearling index, and MW, expressed as units of genetic SD per year, were 0.26, 0.27, and 0.01, respectively. The genetic trend for MW was nonsignificant, suggesting no negative correlated response. The selection practice based on the use of sires with high final index giving preference for those better ranked for yearling precocity and muscling than for conformation generates only a minimal correlated response in MW. © 2013 American Society of Animal Science. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past, the focus of broiler breeding programs on yield and carcass traits improvement led to problems related to meat quality. Awareness of public concern for quality resulted in inclusion of meat quality traits in the evaluation process. Nevertheless, few genes associated with meat quality attributes are known. Previous studies mapped quantitative trait loci for weight at 35 and 42 days in a region of GGA4 flanked by the microsatellite markers, MCW0240 and LEI0063. In this region, there are 2 fibroblast growth factor binding protein (FGFBP) genes that play an important role in embryogenesis, cellulardifferentiation, and proliferation in chickens. The objective of this study was to identify and associate single nucleotide polymorphisms (SNPs) in FGFBP1 and FGFBP2 with performance, carcass, and meat quality in experimental and commercial chicken populations. In the commercial population, SNP g.2014G>A in FGFBP1 was associated with decreased carcass weight (P < 0.05), and SNP g.651G>A in FGFBP2 was associated with thawing loss and meat redness content (P < 0.05). Four haplotypes were constructed based on 2 SNPs and were associated with breast weight, thawing loss, and meat redness content. The diplotypes were associated with thawing loss, lightness, and redness content. The SNPs evaluated in the present study may be used as markers in poultry breeding programs to aid in improving growth and meat quality traits. © FUNPEC-RP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two functional and positional candidate genes were selected in a region of chicken chromosome 1 (GGA1), based on their biological roles, and also where several quantitative trait loci (QTL) have been mapped and associated with performance, fatness and carcass traits in chickens. The insulin-like growth factor 1 (IGF1) gene has been associated with several physiological functions related to growth. The lysine (K)-specific demethylase 5A (KDM5A) gene participates in the epigenetic regulation of genes involved with the cell cycle. Our objective was to find associations of selected single-nucleotide polymorphisms (SNPs) in these genes with performance, fatness and carcass traits in 165 F2 chickens from a resource population. In the IGF1 gene, 17 SNPs were detected, and in the KDM5A gene, nine SNPs were detected. IGF1 SNP c. 47673G > A was associated with body weight and haematocrit percentage, and also with feed intake and percentages of abdominal fat and gizzard genotype × sex interactions. KDM5A SNP c. 34208C > T genotype × sex interaction affected body weight, feed intake, percentages of abdominal fat (p = 0. 0001), carcass, gizzard and haematocrit. A strong association of the diplotype × sex interaction (p < 0. 0001) with abdominal fat was observed, and also associations with body weight, feed intake, percentages of carcass, drums and thighs, gizzard and haematocrit. Our findings suggest that the KDM5A gene might play an important role in the abdominal fat deposition in chickens. The IGF1 and KDM5A genes are strong candidates to explain the QTL mapped in this region of GGA1. © 2012 Institute of Plant Genetics, Polish Academy of Sciences, Poznan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intense selection among broilers, especially for performance and carcass traits, currently favors locomotion problems and bone resistance. Conducting studies relating to development and growth of bone tissue in broilers is necessary to minimize losses. Thus, genetic parameters were estimated for a broiler population's phenotypic traits such as BW at 42 d of age (BW42), chilled femur weight (CFW) and its yield (CFY), and femur measurements: calcium, DM, magnesium, phosphorus, and zinc content; breaking strength; rigidity; length; and thickness. Variance components were estimated through multitrait analyses using the restricted maximum likelihood method. The model included a fixed group effect (sex and hatch) and additive and residual genetic random effects. The heritability estimates we obtained ranged from 0.10 ± 0.05 to 0.50 ± 0.08 for chilled femur yield and BW42, respectively, and indicated that the traits can respond to the selection process, except for CFY, which presented low-magnitude heritability coefficients. Genetic correlation estimates between breaking strength, rigidity, and traits related to mineral content indicated that selection that aims to improve the breaking strength resistance of the femur is highly correlated with mineral content. Given the genetic correlation estimates between BW42 and minerals, it is suggested that in this population, selection for BW42 can be performed with greater intensity without affecting femoral integrity.