151 resultados para Fuzzy KNN
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
This paper refers to the design of an expert system that captures a waveform through the use of an accelerometer, processes the signal and converts it to the frequency domain using a Fast Fourier Transformer to then, using artificial intelligence techniques, specifically Fuzzy Reasoning, it determines if there is any failure present in the underlying mode of the equipment, such as imbalance, misalignment or bearing defects.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Ciências Ambientais - Sorocaba
Resumo:
The objective of this work is to determine the membership functions for the construction of a fuzzy controller to evaluate the energy situation of the company with respect to load and power factors. The energy assessment of a company is performed by technicians and experts based on the indices of load and power factors, and analysis of the machines used in production processes. This assessment is conducted periodically to detect whether the procedures performed by employees in relation to how of use electricity energy are correct. With a fuzzy controller, this performed can be done by machines. The construction of a fuzzy controller is initially characterized by the definition of input and output variables, and their associated membership functions. We also need to define a method of inference and a processor output. Finally, you need the help of technicians and experts to build a rule base, consisting of answers that provide these professionals in function of characteristics of the input variables. The controller proposed in this paper has as input variables load and power factors, and output the company situation. Their membership functions representing fuzzy sets called by linguistic qualities, as “VERY BAD” and “GOOD”. With the method of inference Mandani and the processor to exit from the Center of Area chosen, the structure of a fuzzy controller is established, simply by the choice by technicians and experts of the field energy to determine a set of rules appropriate for the chosen company. Thus, the interpretation of load and power factors by software comes to meeting the need of creating a single index that indicates an overall basis (rational and efficient) as the energy is being used.
Resumo:
This paper presents the application of fuzzy theory to support the decision of implementing energy efficiency program in sawmills operating in the processing of Pinustaeda and Pinuselliotii. The justification of using a system based on fuzzy theory for analysis of consumption and the specific factors involved, such is the diversity of rates / factors. With the fuzzy theory, we can build a reliable system for verifying actual energy efficiency. The indices and factors characteristic of industrial activity were measured and used as the basis for the fuzzy system. We developed a management system and technology. The system involves the management practices in energy efficiency, maintenance of plant and equipment and the presence of qualified staff. The technological system involves the power factor, load factor, the factor of demand and the specific consumption. The first response provides the possibility of increased energy efficiency and the second level of energy efficiency in the industry studied. With this tool, programs can be developed for energy conservation and energy efficiency in the industrial timber with wide application in this area that is as diverse as production processes. The same systems developed can be used in other industrial activities, provided they are used indices and characteristic features of the sectors involved.
Resumo:
This paper presents the application and use of a methodology based on fuzzy theory and simulates its use in intelligent control of a hybrid system for generating electricity, using solar energy, photovoltaic and wind. When using a fuzzy control system, it reached the point of maximum generation of energy, thus shifting all energy generated from the alternative sources-solar photovoltaic and wind, cargo and / or batteries when its use not immediately. The model uses three variables used for entry, which are: wind speed, solar radiation and loading the bank of batteries. For output variable has to choose which of the batteries of the battery bank is charged. For the simulations of this work is used MATLAB software. In this environment mathematical computational are analyzed and simulated all mathematical modeling, rules and other variables in the system described fuzzy. This model can be used in a system of control of hybrid systems for generating energy, providing the best use of energy sources, sun and wind, so we can extract the maximum energy possible these alternative sources without any prejudice to the environment.
Resumo:
The fuzzy logic accepts infinite intermediate logical values between false and true. In view of this principle, a system based on fuzzy rules was established to provide the best management of Catasetum fimbriatum. For the input of the developed fuzzy system, temperature and shade variables were used, and for the output, the orchid vitality. The system may help orchid experts and amateurs to manage this species. ?Low? (L), ?Medium? (M) and ?High? (H) were used as linguistic variables. The objective of the study was to develop a system based on fuzzy rules to improve management of the Catasetum fimbriatum species, as its production presents some difficulties, and it offers high added value
Resumo:
Pós-graduação em Agronegócio e Desenvolvimento - Tupã
Resumo:
The pharmaceutical industry was consolidated in Brazil in the 1930s, and since then has become increasingly competitive. Therefore the implementation of the Toyota Production System, which aims to lean production, has become common among companies in the segment. The main efficiency indicator currently used is the Overall Equipment Effectiveness (OEE). This paper intends to, using the fuzzy model DEA-BCC, analyze the efficiency of the production lines of a pharmaceutical company in the Paraíba Valley, compare the values obtained by the model with those calculated by the OEE, identify the most sensitive machines to variation in the data input and develop a ranking of effectiveness between the consumer machinery. After the development, it is shown that the accuracy of the relationship between the two methods is approximately 57% and the line considered the most effective by the Toyota Production System is not the same as the one found by this paper