137 resultados para Frozen embryo transfer
Resumo:
The aim of this study was to evaluate the suitability of a commercial kit for bovine embryo vitrification for cryopreserving cat oocytes and to evaluate comparatively the effects of its use with slow freezing procedure on cryotolerance in terms of morphology and oocyte resumption of meiosis. Germinal vesicle stage oocytes isolated from cat ovaries were either vitrified (n=72) using a vitrification kit for bovine embryo or slow frozen (n=69) by exposing oocyte to ethylene glycol solution before being transferred to a programmable embryo freezer. After thawing and warming, oocytes were cultured for 48h and then were examined for meiosis resumption using bisbenzimide fluorescent staining (Hoechst 33342). Fresh immature oocytes (n=92) were used as the control group. The proportion of oocytes recovered in a morphologically normal state after thawing/warming was significantly higher in frozen oocytes (94.5%) than in the vitrified ones (75%, p<0.01). Morphological integrity after culture was similar in vitrified (73.6%) and slow frozen oocytes (76.8%); however, only 37.5% of the morphologically normal oocytes resumed meiosis after vitrification compared to 60.9% of those submitted to slow freezing procedure (p<0.01). Fresh oocytes showed higher morphological integrity (91.3%) and meiosis resumption rates (82.6%, p<0.002) than cryopreserved oocytes, irrespective of the procedure used. These results suggest that immature cat oocytes vitrified with a kit for bovine embryos retain their capacity to resume meiosis after warming and culture, albeit at lower rates than slow frozen oocytes. Vitrification and slow freezing methods show similar proportions of oocytes with normal morphology after culture, which demonstrate that thawed and warmed oocytes that resist to cryodamage have the same chances to maintain their integrity after 48h of culture. © 2012 Blackwell Verlag GmbH.
Resumo:
Contents Fibroblast growth factor (FGF10) acts at the cumulus oocyte complex, increasing the expression of cumulus cell expansion-related genes and oocyte competency genes. We tested the hypothesis that addition of FGF10 to the maturation medium improves oocyte maturation, decreases the percentage of apoptotic oocytes and increases development to the blastocyst stage while increasing the relative abundance of developmentally important genes (COX2, CDX2 and PLAC8). In all experiments, oocytes were matured for 22h in TCM-199 supplemented with 0, 2.5, 10 or 50ng/ml FGF10. In Experiment 1, after maturation, oocytes were stained with Hoechst to evaluate meiosis progression (metaphase I, intermediary phases and extrusion of the first polar body) and submitted to the TUNEL assay to evaluate apoptosis. In Experiment 2, oocytes were fertilized and cultured to the blastocyst stage. Blastocysts were frozen for analysis of COX2, CDX2 and PLAC8 relative abundance. In Experiment 1, 2.5ng/ml FGF10 increased (p<0.05) the percentage of oocytes with extrusion of the first polar body (35%) compared to 0, 10 and 50ng/ml FGF10 (21, 14 and 12%, respectively) and FGF10 decreased the percentage of oocytes that were TUNEL positive in all doses studied. In Experiment 2, there was no difference in the percentage of oocytes becoming blastocysts between treatments and control. Real-time RT-PCR showed a tendency of 50ng/ml FGF10 to increase the relative abundance of COX2 and PLAC8 and of 10ng/ml FGF10 to increase CDX2. In conclusion, the addition of FGF10 to the oocyte maturation medium improves oocyte maturation in vitro, decreases the percentage of apoptotic oocytes and tends to increase the relative abundance of developmentally important genes.