213 resultados para Finite-elements method
Resumo:
States that control is of the essence in cybernetics. Summarizes the dynamic equations for a flexible one-link manipulator moving in the horizontal plane. Employs the finite element method, based on elementary beam theory, during the process of formulation. Develops and instruments a one-link flexible manipulator in order to control its vibration modes. Uses a simple second-order vibration model which permits vibrations on the rod to be estimated using the hub angle. The validation of the dynamic model and the structural analysis of the flexible manipulator is reached using proper infrared cameras and active light sources for determining actual positions of objects in space. Shows that the performance of the control is satisfactory, even under perturbation action.
Resumo:
This work focuses on the dynamic modeling of a flexible robotic manipulator with two flexible links and two revolute joints, which rotates in the horizontal plane. The dynamic equations are derived using the Newton-Euler formulation and the finite element method, based on elementary beam theory. Computer simulation results are presented to illustrate this study. The dynamic model becomes necessary for use in future design and control applications.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper discusses the application of a damage detection methodology to monitor the location and extent of partial structural damage. The methodology combines, in an iterative way, the model updating technique based on frequency response functions (FRF) with monitoring data aiming at identifying the damage area of the structure. After the updating procedure reaches a good correlation between the models, it compares the parameters of the damage structure with those of the undamaged one to find the deteriorated area. The influence of the FEM mesh size on the evaluation of the extent of the damage has also been discussed. The methodology is applied using real experimental data from a spatial frame structure.
Resumo:
This paper presents a viscous three-dimensional simulations coupling Euler and boundary layer codes for calculating flows over arbitrary surfaces. The governing equations are written in a general non orthogonal coordinate system. The Levy-Lees transformation generalized to three-dimensional flows is utilized. The inviscid properties are obtained from the Euler equations using the Beam and Warming implicit approximate factorization scheme. The resulting equations are discretized and approximated by a two-point fmitedifference numerical scheme. The code developed is validated and applied to the simulation of the flowfield over aerospace vehicle configurations. The results present good correlation with the available data.
Resumo:
This work considers a problem of interest in several technological applications such as the thermal control of electronic equipment. It is also important to study the heat transfer performance of these components under off-normal conditions, such as during failure of cooling fans. The effect of natural convection on the flow and heat transfer in a cavity with two flush mounted heat sources on the left vertical wall, simulating electronic components, is studied numerically and experimentally. The influence of the power distribution, spacing between the heat sources and cavity aspect ratio have been investigated. An analysis of the average Nusselt number of the two heat sources was performed to investigate the behavior of the heat transfer coefficients. The results obtained numerically and experimentally, after an error analysis, showed a good agreement.
Resumo:
Classical shell-and-tube heat exchangers are usually equipped with segmental baffles. These baffles serve two basic functions: (a) they provide tube supports, thereby preventing or reducing mechanical problems, such as sagging or vibration; (b) they direct the fluid flow over the tubes so as to introduce a cross-flow component, thereby increasing the heat transfer. Segmented baffles have several sources of performance loss, some due to various leakage flows and others caused by stagnation zones. A new concept of longitudinal flow heat exchanger - based on placing twisted tapes along the tube bundle subchannels - was developed to mitigate drawbacks of other types of tubular heat exchangers. In this paper, a numerical model has been implemented in order to simulate the thermal-hydraulic feature of tubular heat exchangers equipped either with segmental baffles or with subchannel twisted tapes. The tube bundle has been described by means of an equivalent porous medium type model, allowing a macroscopic description of the shell-side flow. The basic equations - continuity, momentum and energy - have been solved by using the finite volume method. Typical numerical results have been compared with experimental data, reaching a very good agreement. A comparative analysis of different types of heat exchangers has been carried out, revealing the satisfactory thermal-hydraulic efficiency level of the twisted tapes heat exchangers.
Resumo:
An inverse problem concerning the industrial process of steel bars hardening and tempering is considered. The associated optimization problem is formulated in terms of membership functions and, for the sake of comparison, also in terms of quadratic residuals; both geometric and electromagnetic design variables have been considered. The numerical solution is achieved by coupling a finite difference procedure for the calculation of the electromagnetic and thermal fields to a deterministic strategy of minimization based on modified Flctcher and Reeves method. © 1998 IEEE.
Resumo:
Smart material technology has become an area of increasing interest for the development of lighter and stronger structures which are able to incorporate actuator and sensor capabilities for collocated control. In the design of actively controlled structures, the determination of the actuator locations and the controller gains, is a very important issue. For that purpose, smart material modelling, modal analysis methods, control and optimization techniques are the most important ingredients to be taken into account. The optimization problem to be solved in this context presents two interdependent aspects. The first one is related to the discrete optimal actuator location selection problem, which is solved in this paper using genetic algorithms. The second is represented by a continuous variable optimization problem, through which the control gains are determined using classical techniques. A cantilever Euler-Bernoulli beam is used to illustrate the presented methodology.
Resumo:
In this work, a Finite Element Method treatment is outlined for the equations of Magnetoaerodynamics. In order to provide a good basis for numerical treatment of Magneto-aerodynamics, a full version of the complete equations is presented and FEM contribution matrices are deduced, as well as further terms of stabilization for the compressible flow case.
Resumo:
The pressure field of a high-power klystron amplifier in the cathode and anode region was investigated. The investigation was performed using a 1.3 GHz, 100 A and 240 kV high-power klystron with five reentrant coaxial cavities, assembled in cylindrical drift tube 1.2 m long. The diffusion equation in mathematical model was also solved by using a 3-D finite element method code, in order to obtain pressure profile in region of interest. The results show that density profile of molecules between cathode-anode region was determined, where cathode pressure is approximately 10% higher than anode pressure.
Resumo:
An improvement to the quality bidimensional Delaunay mesh generation algorithm, which combines the mesh refinement algorithms strategy of Ruppert and Shewchuk is proposed in this research. The developed technique uses diametral lenses criterion, introduced by L. P. Chew, with the purpose of eliminating the extremely obtuse triangles in the boundary mesh. This method splits the boundary segment and obtains an initial prerefinement, and thus reducing the number of necessary iterations to generate a high quality sequential triangulation. Moreover, it decreases the intensity of the communication and synchronization between subdomains in parallel mesh refinement. © 2008 IEEE.
Resumo:
The class of piezoelectric actuators considered in this paper consists of a multi-flexible structure actuated by two or more piezoceramic devices that must generate different output displacements and forces at different specified points of the domain and in different directions. The devices were modeled by finite element using the software ANSYS and the topology optimization method. The following XY actuators were build to achieve maximum displacement in the X and Y directions with a minimum crosstalk between them. The actuator prototypes are composed of an aluminum structure, manufactured by using a wire Electrical Discharge Machining, which are bonded to rectangular PZT5A piezoceramic blocks by using epoxy resin. Multi-actuator piezoelectric device displacements can be measured by using optical interferometry, since it allows dynamic measurements in the kHz range, which is of the order of the first resonance frequency of these piezomechanisms. A Michelson-type interferometer, with a He-Ne laser source, is used to measure the displacement amplitudes in nanometric range. A new optical phase demodulation technique is applied, based on the properties of the triangular waveform drive voltage applied to the XY piezoelectric nanopositioner. This is a low-phase-modulation-depth-like technique that allows the rapid interferometer auto-calibration. The measurements were performed at 100 Hz frequency, and revealed that the device is linear voltage range utilized in this work. The ratio between the generated and coupled output displacements and the drive voltages is equal to 10.97 nm/V and 1.76 nm/V, respectively, which corresponds to a 16% coupling rate. © 2010 IEEE.
Resumo:
The aim of this study was to evaluate the influence of the high values of insertion torques on the stress and strain distribution in cortical and cancellous bones. Based on tomography imaging, a representative mathematical model of a partial maxilla was built using Mimics 11.11 and Solid Works 2010 softwares. Six models were built and each of them received an implant with one of the following insertion torques: 30, 40, 50, 60, 70 or 80 Ncm on the external hexagon. The cortical and cancellous bones were considered anisotropic. The bone/implant interface was considered perfectly bonded. The numerical analysis was carried out using Ansys Workbench 10.0. The convergence of analysis (6%) drove the mesh refinement. Maximum principal stress (σ max) and maximum principal strain (ε max) were obtained for cortical and cancellous bones around to implant. Pearson's correlation test was used to determine the correlation between insertion torque and stress concentration in the periimplant bone tissue, considering the significance level at 5%. The increase in the insertion torque generated an increase in the σ max and ε max values for cortical and cancellous bone. The σmax was smaller for the cancellous bone, with greater stress variation among the insertion torques. The ε max was higher in the cancellous bone in comparison to the cortical bone. According to the methodology used and the limits of this study, it can be concluded that higher insertion torques increased tensile and compressive stress concentrations in the periimplant bone tissue.
Resumo:
Summary In this work the structural dependence of plastic rotation capacity in RC beams is evaluated using the Finite Element Method. The objective is to achieve a better understanding of the non-linear behavior of reinforced concrete members and perform extensive parameter studies, using a rational model developed by Bigaj [1] to analyze the phenomenon of plastic rotation capacity in reinforced concrete members. It is assumed that only bending failure is relevant due to sufficient member resistance against shear and torsion. The paper begins with the physical and theoretical background of the phenomenon of plastic hinge development in RC structures. Special emphasis is laid on the issue of structural dependence of deformation capacity of plastic hinges in RC members. Member size dependence and influence of properties of construction materials were emphasized as well. The essential components of the Bigajs model for calculating the plastic rotation capacity are discussed. The behaviour of the plastic hinge is analysed taking into account the strain localisation in the damage zones of the hinge region. The Fictitious Crack Model (FCM) and the Compressive Damage Zone Model (CDZ) are adopted in a Fracture Mechanics approach to model the behaviour of concrete in tension and compression, respectively. The approach is implemented in FEMOOP, a FEM in-house solver under development, and applied to evaluate ductility in 2D beams. The models were generated with GiD, a pre-processor and post-processor developed by CIMNE, and analyzed with the capabilities implemented in FEMOOP. © Universitat Politècnica de Catalunya, Barcelona, España 2010.