264 resultados para Equações diferenciais elipticas
Resumo:
The term model refers to any representation of a real system. The use of models in Hydrogeology can be valuable predictive tools for management of groundwater resources. The numeric models of groundwater flow, object of this study, consist on a set of differential equations that describe the water flow in the porous medium. In this context, numeric simulations were made for a sub-basin located at Cara Preta farm – Santa Rita do Passa Quatro – SP. The aquifer at the local is composed by rocks of Pirambóia Formation, which is part of Guarani Aquifer System. It was developed a conceptual model from previous studies in the area, and from that, simulations were made through the software Visual Modflow®. The conceptual model established previously was considered consistent through the results of simulation.
Resumo:
This work presents a theoretical study of ordinary differential equations of first order directed so as to provide basis for the development of an educational software that helps students and researchers confronted with this issue. The algorithm was developed in HTML language in to that the results provide a website that allows the audience to access the software anywhere which has internet connection
Resumo:
The aim of this work is to analyze the stability of the rotational motion’s artificial satellite using the Routh Hurwitz Algorithm (CRH) and the quaternions to describe the satellite’s attitude. This algorithm allows the investigation of the stability of the motion using the coefficients of the characteristic equation associated with the equation of the rotational motion in the linear form. The equations of the rotational motion are given by the four cinematic equations for the quaternion and the three equations of Euler for the spin velocity’s components. In the Euler equations are included the components of the gravity gradient torque (TGG) and the solar radiation torque (TRS). The TGG is generated by the difference of the Earth gravity force direction and intensity actuating on each satellite mass element and it depends on the mass distribution and the form of the satellite. The TRS is created by changing of the linear momentum, which happens due to the interactions of solar photons with the satellite surface. The equilibrium points are gotten by the equation of rotational motion and the CRH is applied in the linear form of these equations. Simulations are developed for small and medium satellites, but the gotten equilibrium points are not stable by CRH. However, when some of the eigenvalues of the characteristic equation are analyzed, it is found some equilibrium points which can be pointed out as stables for an interval of the time, due to small magnitude of the real part of these eigenvalue
Resumo:
The friction phenomena is present in mechanical systems with two surfaces that are in contact, which can cause serious damage to structures. Your understanding in many dynamic problems became the target of research due to its nonlinear behavior. It is necessary to know and thoroughly study each existing friction model found in the literature and nonlinear methods to define what will be the most appropriate to the problem in question. One of the most famous friction model is the Coulomb Friction, which is considered in the studied problems in the French research center Laboratoire de Mécanique des Structures et des Systèmes Couplés (LMSSC), where this search began. Regarding the resolution methods, the Harmonic Balance Method is generally used. To expand the knowledge about the friction models and the nonlinear methods, a study was carried out to identify and study potential methodologies that can be applied in the existing research lines in LMSSC and then obtain better final results. The identified friction models are divided into static and dynamic. Static models can be Classical Models, Karnopp Model and Armstrong Model. The dynamic models are Dahl Model, Bliman and Sorine Model and LuGre Model. Concerning about nonlinear methods, we study the Temporal Methods and Approximate Methods. The friction models analyzed with the help of Matlab software are verified from studies in the literature demonstrating the effectiveness of the developed programming
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We investigate in this work the behaviour of the decay to the fixed points, in particular along the bifurcations, for a family of one-dimensional logistic-like discrete mappings. We start with the logistic map focusing in the transcritical bifurcation. Next we investigate the convergence to the stationary state at the cubic map. At the end we generalise the procedure for a mapping of the logistic-like type. Near the fixed point, the dynamical variable varies slowly. This property allows us to approximate/rewrite the equation of differences, hence natural from discrete mappings, into an ordinary differential equation. We then solve such equation which furnishes the evolution towards the stationary state. Our numerical simulations confirm the theoretical results validating the above mentioned approximation
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matemática Universitária - IGCE