205 resultados para Energetic metabolism
Resumo:
Objective: To evaluate the skeletal muscle glycogen content and plasmatic concentration of interleukin -6 (IL-6), interleukin-4 (IL-4), interleukin-10 (IL-10) and tumor necrosis factor-alpha (TNF-α) in rats submitted to electrical stimulation sessions during the first three days of ankle immobilization at the position of 90°. Methods: Albinomale Wistar rats(3-4 months) were maintained in vivarium. conditions with food and water ad libitum, Submitted to 12 h photoperiodic cycles of light/dark, and distributed into 7 experimental groups (n = 6): control(C), immobilized 1 day(I1) immobilized 1 day and electrically stimulated(IE1) immobilized 2 days(12), immobilized 2 days and electrically stimulated(IE2), immobilized 3 days(13) and immobilized 3 days and electrically stimulated(IE3). Groups I utilized an acrylic resin orthesis model and groups electrically stimulated (IE) utilized the orthesis and a session of electrotherapy by a Dualpex 961 (biphasic quadratic pulse, 10 Hz, 0.4 ms, 5.0 mA, one 20 min session a day). After the experimental period, the rats were anesthetized with pentobarbital sodium(40 mg/kg) and a blood sample was colleted to evaluate the plasmatic concentration of interleukins by means of the radioimmunoassay method. The soleus and the white portion of the gastrocnemius muscle were colleted for glycogen reserves analysis(GLY). Other groups of rats were used to apply the glucose tolerance test(GTT) and insulin tolerance test(ITT). For statistical analysis, the Kolmogorov-Smirnov normality test followed by ANOVA and the Tukey tests were utilized, with a critical level established at 5%. Results: In ITT test, groups IE enhanced the skeletal muscle glucose uptake, but no changes were observed in GTT after the therapy session, which indicates that electrical stimulation is a sensibilizing method to augment skeletal muscle glucose uptake. The GLY reserves were reduced in I groups, which indicate that disuse altered insulin sensitivity and compromised energetic homeostasis. However. the IE groups displayed an augment in GLY content, suggesting that electrical stimulation restores the enzymatic pathways altered by immobilization. The improvement in GLY was accompanied by an elevation of the plasmatic concentration of IL-6 and TNF-α, showing the participation of these interleukins in the control of metabolic profile. Plasmatic concentrations of IL-10 were elevated only after 3 days of IE while IL-4 did not display any modifications. Conclusion: The results suggest that neuromuscular electricaf stimulation is an important toot in the maintenance of energetic, conditions of musculature submitted to immobilization, and presents multifactor mechanisms linked to interleukins action that converge to maintain the energetic equilibrium of the tissue in disuse.
Resumo:
Locomotion is central to behavior and intrinsic to many fitnesscritical activities (e.g., migration, foraging), and it competes with other life-history components for energy. However, detailed analyses of how changes in locomotor activity and running behavior affect energy budgets are scarce. We quantified these effects in four replicate lines of house mice that have been selectively bred for high voluntary wheel running (S lines) and in their four nonselected control lines (C lines). We monitored wheel speeds and oxygen consumption for 24-48 h to determine daily energy expenditure (DEE), resting metabolic rate (RMR), locomotor costs, and running behavior (bout characteristics). Daily running distances increased roughly 50%-90% in S lines in response to selection. After we controlled for body mass effects, selection resulted in a 23% increase in DEE in males and a 6% increase in females. Total activity costs (DEE - RMR) accounted for 50%-60% of DEE in both S and C lines and were 29% higher in S males and 5% higher in S females compared with their C counterparts. Energetic costs of increased daily running distances differed between sexes because S females evolved higher running distances by running faster with little change in time spent running, while S males also spent 40% more time running than C males. This increase in time spent running impinged on high energy costs because the majority of running costs stemmed from postural costs (the difference between RMR and the zero-speed intercept of the speed vs. metabolic rate relationship). No statistical differences in these traits were detected between S and C females, suggesting that large changes in locomotor behavior do not necessarily effect overall energy budgets. Running behavior also differed between sexes: within S lines, males ran with more but shorter bouts than females. Our results indicate that selection effects on energy budgets can differ dramatically between sexes and that energetic constraints in S males might partly explain the apparent selection limit for wheel running observed for over 15 generations. © 2009 by The University of Chicago. All rights reserved.
Resumo:
Rabbits were experimentally infected with sporulated Eimeria stiedai oocysts. A total of 50 white adult rabbits, New Zealand race, were distributed into two groups: Group A was infected with 1x10 4 sporulated Eimeria stiedai oocysts, while group B was inoculated with distilled water as a control. The animals generally displayed increased levels of total protein, globulin, total cholesterol, LDL-c and triacylglycerols; however, total levels of liver lipids and HDL-c decreased, and plasma glucose levels varied during the experimental period. In sum, Eimeria stiedai infection of rabbits caused a considerable number of changes in the metabolism of lipids, proteins and glucose, which is likely due to direct effects of liver cirrhosis on normal body function.
Resumo:
The pyrH-encoded uridine 5′-monophosphate kinase (UMPK) is involved in both de novo and salvage synthesis of DNA and RNA precursors. Here we describe Mycobacterium tuberculosis UMPK (MtUMPK) cloning and expression in Escherichia coli. N-terminal amino acid sequencing and electrospray ionization mass spectrometry analyses confirmed the identity of homogeneous MtUMPK. MtUMPK catalyzed the phosphorylation of UMP to UDP, using ATP-Mg 2+ as phosphate donor. Size exclusion chromatography showed that the protein is a homotetramer. Kinetic studies revealed that MtUMPK exhibits cooperative kinetics towards ATP and undergoes allosteric regulation. GTP and UTP are, respectively, positive and negative effectors, maintaining the balance of purine versus pyrimidine synthesis. Initial velocity studies and substrate(s) binding measured by isothermal titration calorimetry suggested that catalysis proceeds by a sequential ordered mechanism, in which ATP binds first followed by UMP binding, and release of products is random. As MtUMPK does not resemble its eukaryotic counterparts, specific inhibitors could be designed to be tested as antitubercular agents. © 2010 Elsevier Inc. All rights reserved.
Resumo:
The pattern of global gene expression in Salmonella enterica serovar Typhimurium bacteria harvested from the chicken intestinal lumen (cecum) was compared with that of a late-log-phase LB broth culture using a whole-genome microarray. Levels of transcription, translation, and cell division in vivo were lower than those in vitro. S. Typhimurium appeared to be using carbon sources, such as propionate, 1,2-propanediol, and ethanolamine, in addition to melibiose and ascorbate, the latter possibly transformed to D-xylulose. Amino acid starvation appeared to be a factor during colonization. Bacteria in the lumen were non- or weakly motile and nonchemotactic but showed upregulation of a number of fimbrial and Salmonella pathogenicity island 3 (SPI-3) and 5 genes, suggesting a close physical association with the host during colonization. S. Typhimurium bacteria harvested from the cecal mucosa showed an expression profile similar to that of bacteria from the intestinal lumen, except that levels of transcription, translation, and cell division were higher and glucose may also have been used as a carbon source. © 2011, American Society for Microbiology.
Resumo:
The metabolic effects caused by hydric deficiency (HD) on Eucalyptus grandis clones were assessed by an experiment where plants were cultivated in four blocks. The first was the control block, normally irrigated, whereas the other three blocks were submitted to cycles of hydric deficiency. Analysis of photosynthetic efficiency, enzymatic activity of antioxidant response system, level of pigments and L-proline concentration were performed to evaluate the HD effects. Results showed that HD altered some parameters related to photosynthetic activity, pigments accumulation, proline and enzymatic activity. Clone 433 of E. grandis presented higher response ability to HD.
Resumo:
This study aimed to assess the effect of percutaneous transthoracic lung biopsy on the oxidative metabolism of sheep by measuring the oxidative stress markers of superoxide dismutase (SOD), total glutathione (GSH-t), peroxidase (GSH-Px) and thiobarbituric acid reactive substances (TBARS) in the red cells of these animals. Blood samples were collected from 20 clinically healthy sheep prior to, and 30 min after, percutaneous transthoracic lung biopsy. After biopsy, there was a significant decrease (p < 0.05) in SOD and GSH-Px activity, with no significant change (p ≥ 0.05) in GSH-t and TBARS concentrations. These results showed that percutaneous transthoracic lung biopsy did not significantly affect the oxidative metabolism of sheep 30 min after the procedure, which may be used widely in this species without causing serious tissue damage. © 2012. The Authors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Dogs are commonly affected by hyperglycemic conditions. Hyperglycemia compromises the immune response and favors bacterial infections; however, reports on the effects of glucose on neutrophil oxidative metabolism and apoptosis are conflicting in humans and rare in dogs. Considering the many complex factors that affect neutrophil oxidative metabolism in vivo, we investigated in vitro the specific effect of high concentrations of glucose on superoxide production and apoptosis rate in neutrophils from healthy dogs.Results: The capacity of the neutrophils to reduce tetrazolium nitroblue decreased significantly in the higher concentration of glucose (15.13 ± 9.73% (8 mmol/L) versus 8.93 ± 5.71% (16 mmol/L)). However, there were no changes in tetrazolium nitroblue reduction at different glucose concentrations when the neutrophils were first activated with phorbol myristate acetate. High concentrations of glucose did not affect the viability and apoptosis rate of canine neutrophils either with or without prior camptothecin stimulation. This study provides the first evidence that high concentrations of glucose inhibit the oxidative metabolism of canine neutrophils in vitro in a manner similar to that which occurs in humans, and that the decrease in superoxide production did not increase the apoptosis rate.Conclusions: A high concentration of glucose reduces the oxidative metabolism of canine neutrophils in vitro. It is likely that glucose at high concentrations rapidly affects membrane receptors responsible for the activation of NADPH oxidase in neutrophils; therefore, the nonspecific immune response can be compromised in dogs with acute and chronic hyperglycemic conditions. © 2013 Bosco et al.; licensee BioMed Central Ltd.
Resumo:
Silibinin is a polyphenolic plant flavonoid with anti-inflammatory properties. The present study investigated the effect of silibinin on oxidative metabolism and cytokine production - tumor necrosis factor-alpha (TNF-α), interleukin (IL)12, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6, IL-10, and transforming growth factor beta (TGF-β1) - by peripheral blood monocytes (PBM) from preeclamptic pregnant women. It is a case-controlled study involving women with preeclampsia (PE, n = 30) compared with normotensive pregnant (NT, n = 30) and with non-pregnant (NP, n = 30) women. Monocytes were obtained and cultured with or without silibinin (5 μM or 50 μM) for 18 h. Superoxide anion (O2-) and hydrogen peroxide (H2O2) release were determined by specific assays, and cytokine levels were determined by immunoenzymatic assays (ELISA). Monocytes from preeclamptic women cultured without stimulus released higher levels of O22, H2O2 and TNF-α, and lower levels of IL-10 and TGF-β1 than did monocytes from NT and NP women. Treatment in vitro with silibinin significantly inhibited spontaneous O2- and H2O2 release and TNF-α production by monocytes from preeclamptic women. The main effect of silibinin was obtained at 50 μM concentration. Thus, silibinin exerts anti-oxidative and anti-inflammatory effects on monocytes from preeclamptic pregnant women by inhibiting the in vitro endogenous release of reactive oxygen species and TNF-α production.
Resumo:
Fatty acids are the main substrates used by mitochondria to provide myocardial energy under normal conditions. During heart remodeling, however, the fuel preference switches to glucose. In the earlier stages of cardiac remodeling, changes in energy metabolism are considered crucial to protect the heart from irreversible damage. Furthermore, low fatty acid oxidation and the stimulus for glycolytic pathway lead to lipotoxicity, acidosis, and low adenosine triphosphate production. While myocardial function is directly associated with energy metabolism, the metabolic pathways could be potential targets for therapy in heart failure. © 2013 by Lippincott Williams & Wilkins.
Resumo:
This work aims to study the thermodynamic, ecological and fluid-dynamic aspects of a circulating fluidized bed gasifier using sugar cane bagasse as biomass, in order to estimate a model of its normal operation. In the initial stage was analysed the composition of biomass selected (sugar cane bagasse) and its lower heating value (LHV) was calculated. The energy balance of the gasifier was done, being the volumetric flow of air, synthesis gas and biomass estimated. Also the power produced by this gasifier was theoretically estimated. Then the circulating fluidized bed gasifier was designed for operation with approximately 100 kg/h of processed biomass. Cross-sectional area of the reactor, feeder size, diameter of the exit zone of the gases and minimum height of the expanded bed were selected. Some bed gasifier hydrodynamic factors were also studied. The minimum fluidization velocity, fluidization terminal velocity, and average fluidizing velocity were calculated, in order to understand the fluid-dynamic behaviour of gasification of this fuel. It was obtained a theoretical model that can support a possible prototype of circulating fluidized bed gasifier biomass. Finally, there were studied the ecological aspects of the gasifier, through an overall methodology. Ecological efficiencies were estimated for two scenarios: first considering the carbon cycle and thereafter disregarding the carbon cycle. In both cases, it can be proved the ecological viability of the project. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The doubly labelled water method (DLW) is widely used to measure field metabolic rate (FMR), but it has some limitations. Here, we validate an innovative technique for measuring FMR by comparing the turnover of isotopic rubidium (86Rb kb) with DLW depletion and the rate of CO2 production (V·co2) measured by flow-through respirometry (FTR) for two dunnart species (Marsupialia: Dasyuridae), Sminthopsis macroura (17 g) and Sminthopsis ooldea (10 g). The rate of metabolism as assessed by V·co2 (FTR) and 86Rb kb was significantly correlated for both species (S. macroura, r2 = 0·81, P = 1·19 × 10-5; S. ooldea, r2 = 0·63, P = 3·84 × 10-4), as was V·co2 from FTR and DLW for S. macroura (r2 = 0·43, P = 0·039), but not for S. ooldea (r2 = 0·29, P = 0·168). There was no relationship between V·co2 from DLW and 86Rb kb for either species (S. macroura r2 = 0·22, P = 0·169; S. ooldea r2 = 0·21, P = 0·253). We conclude that 86Rb kb provided useful estimates of metabolic rate for dunnarts. Meta-analysis provided different linear relationships between V·co2 and 86Rb kb for endotherms and ectotherms, suggesting different proportionalities between metabolic rate and 86Rb kb for different taxa. Understanding the mechanistic basis for this correlation might provide useful insights into the cause of these taxonomic differences in the proportionality. At present, it is essential that the relationship between metabolic rate and 86Rb kb be validated for each taxon of interest. The advantages of the 86Rb technique over DLW include lower equipment requirements and technical expertise, and the longer time span over which measurements can be made. The 86Rb method might be particularly useful for estimating FMR of groups for which the assumptions of the DLW technique are compromised (e.g. amphibians, diving species and fossorial species), and groups that are practically challenging for DLW studies (e.g. insects). © 2013 British Ecological Society.
Resumo:
This study was aimed to evaluate the influence of vitamin D (VD) deficiency on cardiac metabolism, morphology, and function. Thus, we investigated the relationship of these changes with the length of the nutrient restriction. Male weanling Wistar rats were allocated into 4 groups: C2 (n=24), animals were fed an AIN-93G diet with 1000 IU VD/kg of chow and were kept under fluorescent light for 2 months; D2 (n=22), animals were fed a VD-deficient AIN-93G diet and were kept under incandescent light for 2 months; C4 (n=21) animals were kept in the same conditions of C2 for 4 months; and D4 (n=23) animals were kept in the same conditions of D2 for 4 months. Biochemical analyses showed lower β-hydroxyacyl coenzyme-A dehydrogenase activity and higher lactate dehydrogenase activity in VD-deficient animals. Furthermore, VD deficiency was related to increased cytokines release, oxidative stress, apoptosis, and fibrosis. Echocardiographic data showed left ventricular hypertrophy and lower fractional shortening and ejection fraction in VD-deficient animals. Difference became evident in the lactate dehydrogenase activity, left ventricular weight, right ventricle weight, and left ventricular mass after 4 months of VD deficiency. Our data indicate that VD deficiency is associated with energetic metabolic changes, cardiac inflammation, oxidative stress, fibrosis and apoptosis, cardiac hypertrophy, left chambers alterations, and systolic dysfunction. Furthermore, length of the restriction influenced these cardiac changes.
Resumo:
Aflatoxins (AF) and fumonisins (FU) are a major problem faced by poultry farmers, leading to huge economic losses. This experiment was conducted to determine the effects of AF (1 mg/kg of feed) and FU (25 mg/kg of feed), singly or in combination, on the lipid metabolism in commercial layers and investigate the efficacy of a commercial binder (2 kg/t of feed) on reducing the toxic effects of these mycotoxins. A total of 168 Hisex Brown layer hens, 37 wk of age, were randomized into a 3 × 2 + 1 factorial arrangement (3 diets with no binder containing AF, FU, and AF+FU; 3 diets with binder containing AF, FU, and AF+FU; and a control diet with no mycotoxins and binders), totaling 7 treatments. The hens contaminated with AF showed the characteristic effects of aflatoxicosis, such as a yellow liver, resulting from the accumulation of liver fat, lower values of plasma very low-density lipoprotein and triglycerides, and higher relative weight of the kidneys and liver. Hepatotoxic and nephrotoxic effects of FU were not observed in this study. On the other hand, the FU caused a reduction in small intestine length and an increase in abdominal fat deposition. The glucan-based binder prevented some of the deleterious effects of these mycotoxins, particularly the effects of AF on hepatic lipid metabolism, kidney relative weight, and FU in the small intestine. © 2013 Poultry Science Association Inc.