163 resultados para Contractions
Resumo:
Pós-graduação em Patologia - FMB
Resumo:
Background: Coactivation may be both desirable (injury prevention) or undesirable (strength measurement). In this context, different styles of muscle strength stimulus have being investigated. In this study we evaluated the effects of verbal and visual stimulation on rectus femoris and biceps femoris muscles contraction during isometric and concentric. Methods: We investigated 13 men (age =23.1 ± 3.8 years old; body mass =75.6 ± 9.1 kg; height =1.8 ± 0.07 m). We used the isokinetic dynamometer BIODEX device and an electromyographic (EMG) system. We evaluated the maximum isometric and isokinetic knee extension and flexion at 60°/s. The following conditions were evaluated: without visual nor verbal command (control); verbal command; visual command and; verbal and visual command. In relation to the concentric contraction, the volunteers performed five reciprocal and continuous contractions at 60°/s. With respect to isometric contractions it was made three contractions of five seconds for flexion and extension in a period of one minute. Results: We found that the peak torque during isometric flexion was higher in the subjects in the VVC condition (p > 0.05). In relation to muscle coactivation, the subjects presented higher values at the control condition (p > 0.05). Conclusion: We suggest that this type of stimulus is effective for the lower limbs.
Resumo:
Background: Flexible poles are tools used to provide rapid eccentric and concentric muscle contractions. It lacks in the literature studies that analyze acute cardiovascular responses in different exercises performed with this instrument. It was investigated the acute effects of exercise with flexible poles on heart period in healthy women. Methods: The study was performed on 32 women between 18 and 25 years old. It was evaluated the heart rate variability (HRV) in the time (SDNN, RMSSD and pNN50) and frequency domain (HF, LF and LF/HF ratio). The subjects remained at rest for 10 minutes. After the rest period, the volunteers performed the exercises with the flexible poles. Immediately after the exercise protocol, the volunteers remained seated at rest for 60 minutes and HRV were analyzed. Results: It was observed no significance changes in the time domain (SDNN: p = 0.14; RMSSD: p = 0.8 and pNN50: p = 0.86) and frequency domain indices (LF (nu): 0.4; LF (ms2): p = 0.34; HF (nu): p = 0.4; HF (ms2): p = 0.8 and LF/HF ratio: p = 0.3) between before and after single bout of exercise with flexible pole. Conclusion: A single bout of exercise with flexible pole did not significantly change cardiac autonomic regulation in healthy women.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The ankle sprains represent the most common injuries in sports and basketball. In this sense, the use of ankle bracing and strength capacity analysis of the ankle evertor and invertor muscles, have been suggested as preventive measures and important tools for identifying risk factors associated with ankle sprains. However, questions still persist as to effect of the use ankle bracing on biomechanical variables related to the stability of the ankle. For this reason, this study aims to analyze the effect of the use of ankle bracing on peak torque (PT) of ankle evertor and invertor muscles and on eccentric evertor/concentric invertor torque ratio (EVEECC/INVCON), during the basketball match-play simulation. Ten healthy college basketball players, without mechanics or functional ankle instability performed a laboratory-based protocol representative of work rates observed during basketball match-play, in two different situations, with and without use of ankle bracing. The test was composed of a succession of intermittent physical effort equally distributed in four periods of 10 minutes each, considering the mechanical and physiological demands of a basketball match-play. Prior to the start of the trial (Evaluation 1) and after 2° (Evaluation 2) and 4° (Evaluation 3) periods, the subjects performed five maximal isokinetic concentric and eccentric contractions of ankle invertor and evertor muscles, separated by two minutes rest, at 60 °/s and 120 °/s. After testing for normality of data distribution with the Shapiro-Wilk test, was used the ANOVA repeated measures for two factors and post-hoc Bonferroni test for comparison of variables between assessments. Was adopted p < 0.05. There was no significant difference for PT and EVEECC/INVCON torque ratio between assessments. There was a decrease in PT EVEECC at 60º/s and 120º/s for the ...(Complete abstract click electronic access below)
Resumo:
The heart of the insect is essentially myogenic, in others words, electrical activity and spontaneous contractions are generated by their muscle cells. However, the nature of pacemaker activity is not yet fully elucidated. One aspect that deserves attention, beyond the pacemaker activity, is the amplitude of heart contractions of the insect. For this, it is necessary that the heart to be stimulated electrically to the frequency to be controlled. In the present work, it was developed a method of stimulation (preparation and instrumentation). The contractile activity of the heart of the insect remained regular when stimulated at frequencies lightly above the spontaneous frequency. To characterize excitability of the preparation the intensity-duration curve was determined
Resumo:
Tricyclic antidepressants, such as amitriptyline, are inhibitors of serotonin and norepinephrine neuronal reuptake and this action has been implied in changes in pain threshold supporting its use to alleviate neuropathic pain. Although is known that 1 adrenoceptors participate in the antinociceptive effect of amitriptyline it is unclear which receptor subtype is the target for the increased synaptic levels of norepinephrine resultant from the inhibition of neuronal uptake. Paradoxically, several tricyclic antidepressants including amitriptyline also behave as antagonists of 1 adrenoceptors with different affinities for its subtypes: these drugs have 10 to 100-fold higher affinities for 1A than for 1B and 1D adrenoceptors. This work investigated the involvement of 1 adrenoceptors subtypes in the antinociceptive effect of the amitriptyline in a constriction of the sciatic nerve in rats by determining the effects of subtype selective 1 adrenoceptors antagonists. Fifteen days later, mechanical hyperalgesia was analyzed in a Randall-Selitto test. The 1A-selective antagonist RS100329 was the most potent antagonist of the contractions of the rat prostate, whereas the 1D-selective antagonist BMY 7378 (up to 100g/Kg) was unable to affect these contractions. The antagonist prazosin, BMY 7378 and 5-methyl urapidil inhibited the antinociceptive effect of the amitriptyline. However, the highly selective 1A adrenoceptor antagonist RS100329 was unable to affect the antinociception induced by amitriptyline. These results point out that 1B and/or 1D adrenoceptors, but not 1A, are involved in the antinociceptive effects of amitriptyline
Resumo:
The objective of the present study was to compare in which part (lower limb or upper limb) the repeated bout effect has the greatest magnitude. Twelve males individuals with no recent (6 months) experience with resisted training participated in this study. The subjects were randomly divided into two groups (legs and arms) and came to the laboratory 5 times. 1st) adaptation to the dynamometer. 2nd) to perform one bout of eccentric exercise (EE) and provide markers such as isometric peak torque (IPT), delayed onset muscle soreness (DOMS) (both collected before and after the bout) and concentration of the creatine kinase (CK) enzyme in the blood (only before the bout). 3rd) 48 after the first bout the same markers were collected again. After 14 days, the methodologies used in the 2nd and 3rd visits to the laboratory were repeated respectively to determine the repeated bout effect. A significant decrease of IPT and a significant increase of CK and DOMS were found immediately after and 48 hours after the first bout of EE for the arms group. The legs group showed a significant increase in CK (48 hours after the EE) and DOMS (immediately after the EE) resulting from the first bout. In the arms group, the second bout did not cause significant increase in CK or DOMS on any of the situations, however, it provoked a decrease in force production immediately after the EE. The legs group showed a significant increase of DOMS immediately after the second bout of EE, which caused no significant increase in CK. The only marker in which the repeated bout effect happened for both groups was CK. No significant difference was found between the protections for both groups. Taking into account the results, it’s been discussed whether there is a relation between the susceptibility to muscle damage and the repeated bout effect, and also...(Complete abstract click electronic access below)
Resumo:
The objective of this study was to investigate the influence of previous active static stretch on the isometric peak torque (PT) and rate of force development (RFD) measured from different time intervals from the beginning of muscle contraction. Participated of this study 15 male individuals, apparently healthy, with ages between 18 and 25 years, without regular physical activity practice. The individuals were submitted in different days to the following tests: 1) Familiarization session to the isokinetic dynamometer; 2) Two maximal isometric concentric contractions for knee extensors in isokinetic dynamometer to determine PT and RFD (Control), and; 3) Two active static stretching exercises for the dominant leg extensors (10 x 30 s for each exercise, with 20 s of rest). After the stretching, the isokinetic test was repeated (Post-Stretching). The conditions 2 and 3 were performed in random order. The RFD was considered as the mean slope of the moment-time curve at time intervals of 0-30, 0-50 and 0-100ms relative to the beginning of muscle contraction. It was verified significant reduction for both maximal RFD and PT after the stretching (p < 0.05). At intervals of 0- 30ms, 0-50ms and 0-100ms, the RFD at the conditions with stretching was similar to the RFD without stretching (p > 0.05). At intervals of 0-150ms and 0-200ms, the RFD obtained at the contraction without stretching was significantly higher that that obtained at the contraction with stretching (p < 0.05). It can be concluded that the static stretching, performed with duration of 600 s diminish isometric PT, maximal RFD and RFD measured at late phase (> 100 ms) of muscle contraction.
Resumo:
The objective of the present study was to compare the effects of a high speed isokinetic training (180°.s-1) and an isometric training (75°) on the maximum rate of force development (RFDmax) measured in the isokinetic and isometric modes. Twenty seven male non active subjects participated of this study (Mean + SD = body mass 78.6 + 14.1 kg; stature 175.1 + 8.9 cm; age 22.6 + 3.8 years). They were randomly divided into three groups: Control (GC); Isokinetic training (GISOC) and; Isometric training (GISOM). The subjects were submitted in different days to the following pre training protocols: 1) Familiarization to the isokinetic dynamometer tests; 2) Five maximum concentric isokinetic contractions of the knee extensors (180°.s-1) to access the maximum concentric torque (TMC) and the concentric RFDmax; 3) Two maximum isometric contractions of the knee extensors (75°) to access the maximum isometric torque (TMI) and the isometric RFDmax. The same tests were repeated after the training period, but without the familiarization session. Eighteen training sessions were performed (3 times per week). The GISOC performed the entire training whit concentric isokinetic contractions whit the speed of 180°.s-1. The GISOM performed the entire training whit isometric contractions whit the angle between the thigh end the leg being 75° (0° = full knee extension). TMI, TMC, concentric RFDmax, isometric RFDmax values of the GC was not different between pre and post training. GISOM increased only the TMI and the GSIOC increased the TMC, concentric RFDmax and isometric RFDmax. Furthermore, the GISOC had a higher percentage increase of the isometric RFDmax than the isokinetic RFDmax. Based on these results, it is possible to conclude that the increase in maximum strength corresponded to the training specificity theory, unlike to the RFDmax. Thus the use of isometric contraction ...(Complete abstract click electronic access below)
Resumo:
The objective of this study was to investigate the influence of previous active static stretch on the peak torque (PT) and rate of force development (TDF) during isokinetic concentric contractions at 60 and 180.s-1 in active individuals. Twelve active subjects with ages between 18 and 30 years participated of this study. The individuals were submitted in different days to the following tests: 1) Familiarization session to the isokinetic dynamometer; 2) Five maximal isokinetic concentric contractions for knee extensors at each angular velocity (60 and 180.s-1) to determine PT and TDF (Control), and; 3) Two active static stretching exercises for the dominant leg extensors (10 x 30 s for each exercise, with 20 s of rest). After the stretching, the isokinetic test was repeated (Post-Stretching). The conditions 2 and 3 were performed in random order. There was no significant modification after the stretch exercises on the PT, angle and time at which the PT was attained, at 60 and 180º.s-1. In the same way, there was no significant modification on the TDF and angle at which the maximal TDF was attained in both angular speeds. In other way, the time to attain maximal TDF (TTDF) at 180º.s-1 was significantly lower after the stretching (Pre - 98.3 ± 27.5 ms and Post - 86.6 ± 30.2 ms). There was significant modification on the torque (60 and 180º.s-1) and time (60º.s-1) at different delta of angle variations, obtained at 60º.s-1 at Control and Post-Stretching conditions. However, there was significant reduction of time after the stretching exercises on delta of angle variations of 90-88º (Pre - 46.6 ± 6.5 ms and Post - 44.1 ± 5.1 ms), 88-85º (Pre - 65.8 ± 7.9 ms and Post - 63.3 ± 4.9 ms) and 85-80º (Pre - 93.3 ± 7.7 ms and Post - 90.0 ± 4.2 ms) at 180º.s-1. With base on these data, it is possible to conclude that PT and TDF do not modify after static stretching, irrespectively on the speed...(Complete abstract click electronic access below)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)