246 resultados para Bone healing
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Cirurgia Veterinária - FCAV
Resumo:
AimTo evaluate peri-implant bone repair of implants placed into the roots of delayed reimplanted teeth, in a process of ankylosis and external replacement resorption.Material and methodsThe third and fourth mandibular premolars of four (4) beagle dogs were used as experimental sites. The study was divided into three stages: stage 1 - endodontic and extraction/reimplantation session, stage 2 - decrowning session and stage 3 - implant placement. Two groups were identified: (I) immediate implants, including implants installed in fresh extraction sockets of the distal roots, and (II) experimental implants, including implants installed into the retained ankylotic mesial roots. In each group, 16 implants were planned to be inserted, but only 9 immediate implants and 12 experimental implants were used for analyses. Implants were intended to heal in a submerged mode. After 4 months of healing, the animals were sacrificed and ground sections were obtained for histomorphometric evaluation.ResultsEleven of the twelve implants in the experimental group were found successful regarding clinical and radiographic aspects. For immediate implants, a lower BIC% was found at the coronal portion (BIC% 1=42.2%) compared with the three most coronal threads portion (BIC% 2=55.1). Also, experimental implants presented a lower BIC% at the coronal portion (BIC% 1=36.9%) compared with the three most coronal threads portion (BIC% 2=45.3).ConclusionComparison between groups showed a higher degree of BIC% and mineralization in immediate group compared with experimental group. The differences, however, did not yield statistical significance.
Resumo:
The development of polymeric blends to be used as matrices for bone regeneration is a hot topic nowadays. In this article we report on the blends composed by corn starch and poly(vinylidene fluoride), PVDF, or poly(vinylidene fluoride-trifluoroethylene), P(VDF-TrFE), to obtain biocompatible materials. Blends were produced by compressing/annealing and chemically/structurally characterized by micro-Raman scattering and Fourier transform infrared (FTIR) absorption spectroscopies, dynamic mechanical analysis (DMA) and scanning electron microscopy (SEM), besides in vivo study to evaluate the tissue response. Vibrational spectroscopy reveals no chemical interaction between the polymers and starch, absence of material degradation due to compressing/annealing process or organism implantation, and maintenance of a and ferroelectric crystalline phases of PVDF and P(VDF-TrFE), respectively. As a consequence of absence of interaction between polymers and starch, it was possible to identify by SEM each material, with starch acting as filler. Elastic modulus (E') obtained from DMA measurement, independent of the material proportion used in blends, reaches values close to those of cancellous bone. Finally, the in vivo study in animals shows that the blends, regardless of the composition, were tolerated by cancellous bone. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: To compare the healing and bony crest resorption at implants installed conventionally or applying an edentulous ridge expansion (ERE) technique in the maxilla.Material and methods: In six Labrador dogs, the first and second maxillary incisors were extracted bilaterally. In the left side of the maxilla (Test), the flaps were elevated and the buccal plate of the alveoli and septa was removed. After 3 months of healing, partial-thickness (split) flaps were dissected and the residual alveolar bone was exposed. In the right side of the maxilla, an implant was installed conventionally (Type IV; Control) while, in the left side, the ERE technique was adopted. Hence, an expansion of the buccal bony crest was obtained, and the implant was subsequently installed (Test). After 3 months of healing, biopsies were obtained and ground sections were prepared for histological analyses.Results: A buccal vertical resorption of the bony crest of 2.2 +/- 1.2 mm and 1.6 +/- 0.7 mm was found at the test and control sites, respectively. The difference, however, did not reach statistical significance. The coronal level of osseointegration at the buccal aspect was located at 3.1 +/- 1.0 mm and 2.2 +/- 0.7 mm from the implant shoulder at the test and control sites, respectively, the difference being statistically significant. The mean values of the mineralized bone-to-implant contact (MBIC%) ranged from 43% to 48% at the buccal and lingual sites. No differences reached statistical significance.Conclusions: Implants installed by applying an ERE technique may osseointegrate similarly to conventional implant installation. However, vertical and horizontal resorption of the displaced buccal bony wall occurred as well.
Resumo:
Objective: To study bony and soft tissue changes at implants installed in alveolar bony ridges of different widths.Material and methods: In 6 Labrador dogs, the mandibular premolars and first molars were extracted, and a buccal defect was created in the left side at the third and fourth premolars by removing the buccal bone and the inter-radicular and interdental septa. Three months after tooth extraction, full-thickness mucoperiosteal flaps were elevated, and implants were installed, two at the reduced (test) and two at the regular-sized ridges (control). Narrow or wide abutments were affixed to the implants. After 3 months, biopsies were harvested, and ground sections prepared for histological evaluation.Results: A higher vertical buccal bony crest resorption was found at the test (1.5 +/- 0.7 mm and 1.0 +/- 0.7 mm) compared to the control implants (1.0 +/- 0.5 mm and 0.7 +/- 0.4 mm), for both wide and narrow abutment sites. A higher horizontal alveolar resorption was identified at the control compared to the test implants. The difference was significant for narrow abutment sites. The peri-implant mucosa was more coronally positioned at the narrow abutment, in the test sites, while for the control sites, the mucosal adaptation was more coronal at the wide abutment sites. These differences, however, did not reach statistical significance.Conclusions: Implants installed in regular-sized alveolar ridges had a higher horizontal, but a lower vertical buccal bony crest resorption compared to implants installed in reduced alveolar ridges. Narrow abutments in reduced ridges as well as wide abutments in regular-sized ridges yielded less soft tissue recession compared to their counterparts.
Resumo:
Objective: To compare with pristine sites bone resorption and soft tissue adaptation at implants placed immediately into extraction sockets (IPIES) in conjunction with deproteinized bovine bone mineral (DBBM) particles and a collagen membrane.Material and methods: The mesial root of the third premolar in the left side of the mandible was endodontically treated (Test). Flaps were elevated, the tooth hemi-sectioned, and the distal root removed to allow the immediate installation of an implant into the extraction socket in a lingual position. DBBM particles were placed into the defect and on the outer contour of the buccal bony ridge, concomitantly with the placement of a collagen membrane. A non-submerged healing was allowed. The premolar on the right side of the mandible was left in situ (control). Ground sections from the center of the implant as well as from the center of the distal root of the third premolar of the opposite side of the mandible were obtained. The histological image from the implant site was superimposed to that of the contralateral pristine distal alveolus, and dimensional variation evaluated for the hard tissue and the alveolar ridge.Results: After 3 months of healing, both histological and photographic evaluation revealed a reduction of hard and soft tissue dimensions.Conclusion: The contour augmentation performed with DBBM particles and a collagen membrane at the buccal aspects of implants placed IPIES was not able to maintain the tissue volume.
Resumo:
Objective: To compare the hard tissue changes at implants installed applying edentulous ridge expansion (E.R.E.) at sites with a buccal bony wall thickness of 1 or 2 mm.Material and methods: In six Labrador dogs, the first and second maxillary incisors were extracted, and the buccal alveolar bony plates and septa were removed. After 3 months of healing, partial-thickness flaps were dissected, and the E.R.E. was applied bilaterally. Hence, an expansion of the buccal bony crest was obtained in both sides of the maxilla with a displacement of either a 1- or a 2-mm-wide buccal bony plate at the test and control sites, respectively. After 3 months of healing, biopsies were obtained for histological analyses.Results: A buccal vertical resorption of the alveolar crest of 2.3 +/- 0.8 and 2.1 +/- 1.1 mm, and a coronal level of osseointegration at the buccal aspect of 2.7 +/- 0.5 and 2.9 +/- 0.9 mm were found at the test (1 mm) and control (2 mm) sites, respectively. The differences did not reach statistical significance. The mean values of the mineralized bone-to-implant contact (MBIC%) ranged from 62% to 73% at the buccal and lingual sites. No statistically significant differences were found. Horizontal volume gains of 1.8 and 1.1 mm were observed at the test and control sites, respectively, and the difference being statistically significant.Conclusions: Implants installed using the E.R.E. technique yielded a high degree of osseointegration. It is suggested that the displacement of buccal bony plates of 1 mm thickness is preferable compared with that of wider dimensions.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
This case report presents an apical radicular perforation management using new calcium silicate-based cement (Biodentine) in a combined endodontic-periodontal lesion. The presence of apical radicular perforation may interfere in the endodontic treatment prognosis. Radicular perforation filling with bioactive cement through endodontic surgery is a possible treatment. This study presents an apical radicular perforation with periodontal involvement, due to alveolar bone loss on the buccal radicular surface from an incorrect intracanal preparation for the fiber post placing. The chosen alternative was a periapical surgery, the perforation was filled with a silicate and calcium chloride bioactive cement (Biodentine; Septodont, Saint-Maur-des-Fosses Cedex, France), and the radicular surface was etched with citric acid, because the access from root canal was impossible. The follow-up was for 8 months, through clinical and radiographic analysis. At the end of the follow-up, radiographic analyses showed the bone healing, and no clinical changes in periodontal probing depth, gingival recession, and the height of the interproximal mesial and distal papillae were observed. The root perforation treatment has a difficult management, especially when the dental root has a simultaneous periodontal commitment. The Biodentine proves to be a promising material for use in these situations.
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)