286 resultados para Blast-furnace
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this study was to know the yeast biodiversity from fresh olive (Olea europaea L.) fruits, olive paste (crush olives) and olive pomace (solid waste) from Arbequina and Cornicabra varieties. Yeasts were isolated from fruits randomly harvested at various olive groves in the region of Castilla La Mancha (Spain). Olive paste and pomace, a byproduct of the processing of this raw material, were also collected in sterile flasks from different oil mills. Molecular identification methodology used included comparison of polymerase chain reaction (PCR) amplicons of their 5.8S rRNA gene and internal transcribed spacers ITS1 and ITS2 followed by restriction pattern analysis (RFLP). For some species, sequence analysis of the 5.8S rDNA gene was necessary. The results were compared to sequences held in public databases (BLAST). These techniques allowed to identify fourteen different species of yeasts, belonging to seven different genera (Zygosaccharomyces, Pichia, Lachancea, Kluyveromyces, Saccharomyces, Candida, Torulaspora) from the 108 yeast isolates. Species diversity was thus considerable: Pichia caribbica, Zygosaccharomyces fermentati (Lachancea fermentati) and Pichia holstii (Nakazawaea holstii) were the most commonly isolated species, followed by Pichia mississippiensis, Lachancea sp., Kluyveromyces thermotolerans and Saccharomyces rosinii. The biotechnological properties of these isolates, was also studied. For this purpose, the activity of various enzymes (beta-glucosidase, beta-glucanase, carboxymethylcellulase, polygalacturonase, peroxidase and lipase) was evaluated. It was important that none of species showed lipase activity, a few had cellulase and polygalacturonase activities and the majority of them presented beta-glucanase, beta-glucosidase and peroxidase activities. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
CaMoO4 (CMO) disordered and ordered thin films were prepared by the complex polymerization method (CPM). The films were annealed at different temperatures and time in a conventional resistive furnace (RF) and in a microwave (MW) oven. The microstructure and surface morphology of the structure were monitored by atomic force microscopy (AFM) and high-resolution scanning electron microscopy (HRSEM). Order and disorder were characterized by X-ray diffraction (XRD) and optical reflectance. A strong photoluminescence (PL) emission was observed in the disordered thin films and was attributed to complex cluster vacancies. The experimental results were compared with density functional and Hartree-Fock calculations. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper analyzes the thermal storage characteristics of aluminum plates in furnaces during their heating for lamination under two sources of heat: an electrical resistance bank and a combustion process carried out with natural gas. The set of equations to model the furnace under operation with electrical energy, for air as the fluid, is presented. This supports the theoretical analysis for the system under operation with natural gas combustion products. A numerical procedure, using the software ANSYS, is applied to determine the convection heat transfer coefficients for heating by the air flow. Temperatures measured in a plate inside a real furnace are used as parameters to determine these coefficients. Then convection and radiation heat transfer coefficients are determined for the natural gas combustion products. Results are compared, indicating a possible gain of 5.5 h in relation to a 19.5 h period of conventional electrical heating per plate.
Resumo:
A new strategy for minimization of Cu2+ and Pb2+ interferences on the spectrophotometric determination of Cd2+ by the Malachite green (MG)-iodide reaction using electrolytic deposition of interfering species and solid phase extraction of Cd2+ in flow system is proposed. The electrolytic cell comprises two coiled Pt electrodes concentrically assembled. When the sample solution is electrolyzed in a mixed solution containing 5% (v/v) HNO3, 0.1% (v/v) H2SO4 and 0.5 M NaCl, Cu2+ is deposited as Cu on the cathode, Pb2+ is deposited as PbO2 on the anode while Cd2+ is kept in solution. After electrolysis, the remaining solution passes through an AG1-X8 resin (chloride form) packed minicolumn in which Cd2+ is extracted as CdCl4/2-. Electrolyte compositions, flow rates, timing, applied current, and electrolysis time was investigated. With 60 s electrolysis time, 0.25 A applied current, Pb2+ and Cu2+ levels up to 50 and 250 mg 1-1, respectively, can be tolerated without interference. For 90 s resin loading time, a linear relationship between absorbance and analyte concentration in the 5.00-50.0 μg Cd 1-1 range (r2 = 0.9996) is obtained. A throughput of 20 samples per h is achieved, corresponding to about 0.7 mg MG and 500 mg KI and 5 ml sample consumed per determination. The detection limit is 0.23 μg Cd 1-1. The accuracy was checked for cadmium determination in standard reference materials, vegetables and tap water. Results were in agreement with certified values of standard reference materials and with those obtained by graphite furnace atomic absorption spectrometry at 95% confidence level. The R.S.D. for plant digests and water containing 13.0 μg Cd 1-1 was 3.85% (n = 12). The recoveries of analyte spikes added to the water and vegetable samples ranged from 94 to 104%. (C) 2000 Elsevier Science B.V.
Resumo:
A method is described for the simultaneous determination of Cd, Cr, Ni and Pb in mineral water samples by graphite furnace atomic absorption spectrometry with a transversely heated graphite atomizer (THGA) and a longitudinal Zeeman-effect background correction system. The electrothermal behavior of analytes during pyrolysis and atomization steps was studied without modifier, in presence of 5 μg Pd and 3 μg Mg(NO3)2 and in presence of 50 μg NH4H2PO4 and 3 μg Mg(NO3)2. A volume of 20 μL of a 0.028 mol L -1 HNO3 solution containing 50 μg L-1 Ni and Pb, 10 μg L-1 Cr and 5 μg L-1 Cd was dispensed into the graphite tube at 20°C. The mixture palladium/magnesium was selected as the optimum modifier. The pyrolysis and atomization temperatures were fixed at 1000°C and 2300°C, respectively. The characteristic masses were calculated as 2.2 pg Cd, 10 pg Cr, 42 pg Ni and 66 pg Pb and the lifetime of the graphite tube was around 600 firings. Limits of detection based on integrated absorbance were 0.02 μg L-1Cd, 0.94 μg L-1 Cr, 0.45 μg L-1 Ni and 0.75 μg L-1 Pb, which exceeded the requirements of Brazilian Food Regulation that establish the maximum permissible level for Cd, Cr, Ni and Pb at 3 μg L-1, 50 μg L-1, 20 μg L-1 and 10 μg L-1, respectively. The recoveries of Cd, Cr, Ni and Pb added to mineral water samples varied within the 93-108%, 96-104%, 87-101% and 98-108% ranges, respectively. Results of analysis of standard reference materials (National Institute of Standards and Technology: 1640-Trace Elements in Natural Water; 1643d-Trace Elements in Water) were in agreement with certified values at the 95% confidence level.
Resumo:
Lead zirconate titanate (PZT) solutions were prepared using a polymeric precursor method, Zr n-propoxide and Ti i-propoxide were used as starting materials with ethylene glycol and water as solvents. The PZT solution was spin-coated on Pt/Ti/SiO2/Si substrates, baked on a hot plate, and finally heat-treated in a tube furnace between 400 and 800°C. The surface morphology and grain size of the films were characterized by atomic force microscopy (AFM), using a tapping mode with amplitude modulation. The films, thermal annealed at temperatures higher than 500°C, exhibited a dense microstructure, without noticeable cracks or voids. Electrical properties were investigated as a function of composition and annealing temperature.
Resumo:
It is very important for the building of the SAW devices to study dielectric and ferroelectrics properties because every SAW device is based in piezoelectric effect that it is made up to transform an electric sign in the mechanical or acoustic sign and a mechanical or acoustic sign in an electric sign. Thus, the purpose of the present work is to prepare PbZr 0,53Ti0.47O3 (PZT) and PbTiO3 (PT) thin films on the Si (100) substrates across spin-coating using a chemical method based in polymeric precursors. After conventional treatment in the furnace, the films were characterized by impedance spectroscopy and hysteresis loops to know its dielectric and ferroelectric properties.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a simple, fast and sensitive method to determine manganese in samples of feces and fish feed by graphite furnace atomic absorption spectrometry (GFAAS) by the direct introduction of slurries into the graphite tube. The limits of detection (LOD) and quantification (LOQ) calculated for 20 readings of the blank of the standard slurries (0.50 % m/v of feces or feed devoid of manganese) were 28 and 92 μg kg-1 for the standard feces slurries and 34 and 110 μg kg-1 for the standard feed slurries. The proposed method was applied in bioavailability studies of manganese in different fish feeds and their results proved compatible with those obtained for samples mineralized by acid digestion using microwave oven. ©2007 Sociedade Brasileira de Química.
Resumo:
Bismuth titanate ceramics (Bi 4Ti 3O 12) with 10 wt% in excess of bismuth (BIT10) were prepared by the polymeric precursor method and sinterized in microwave (MW) and conventional furnaces (CF). The effect of microwave energy on structural and electrical behavior of BIT10 ceramics was investigated by means of X-ray diffraction (XRD), Scanning electron microscopy (SEM) and electrical measurements. The results of the BIT10 ceramics processed in the microwave furnace (MW) showed a high structural organization compared to conventional treatment (CF). Size of grains and dieletrical properties are influenced by annealing conditions while coercitive field is not dependent on it. The maximum dielectric permittivity (12000) was obtained for the sample sintered in the microwave furnace. Piezoelectric force microscopy images reveals that in-plane response may not change its sign upon polarization switching, while the out-of-plane response does with the influence of microwave energy. Copyright © 2010 American Scientific Publishers All rights reserved.