193 resultados para Antimicrobial stewardship
Resumo:
Antimicrobial peptides (AMPs) are a promising solution to face the antibiotic-resistant problem because they display little or no resistance effects. Dimeric analogues of select AMPs have shown pharmacotechnical advantages, making these molecules promising candidates for the development of novel antibiotic agents. Here, we evaluate the effects of dimerization on the structure and biological activity of the AMP aurein 1.2 (AU). AU and the C- and N-terminal dimers, (AU)2K and E(AU)2, respectively, were synthesized by solid-phase peptide synthesis. Circular dichroism spectra indicated that E(AU)2 has a coiled coil structure in water while (AU)2K has an α-helix structure. In contrast, AU displayed typical spectra for disordered structures. In LPC micelles, all peptides acquired a high amount of α-helix structure. Hemolytic and vesicle permeabilization assays showed that AU has a concentration dependence activity, while this effect was less pronounced for dimeric versions, suggesting that dimerization may change the mechanism of action of AU. Notably, the antimicrobial activity against bacteria and yeast decreased with dimerization. However, dimeric peptides promoted the aggregation of C. albicans. The ability to aggregate yeast cells makes dimeric versions of AU attractive candidates to inhibit the adhesion of C. albicans to biological targets and medical devices, preventing disease caused by this fungus. © 2013 Springer-Verlag Wien.
Resumo:
Photodynamic therapy (PDT) is a technique that involves the activation of photosensitizers by light in the presence of oxygen, resulting in the production of reactive radicals that are capable of inducing cell death. The present study evaluated the susceptibility of Streptococcus mutans and Lactobacillus acidophilus to PDT grown as multi-species in the biofilm phase versus in dentine carious lesions. A brain-heart infusion culture medium supplemented with 1 % glucose, 2 % sucrose, and 1 % young primary culture of L. acidophilus 108 CFU/mL and S. mutans 108 CFU/mL was used to develop multi-species biofilms and to induce caries on human dentine slabs. Five different concentrations of curcumin (0.75, 1.5, 3.0, 4.0, and 5.0 g/L) were used associated with 5.7 J/cm2 light emission diode. Four different groups were analyzed L-D- (control group), L-D+ (drug group), L+D- (light group), and L+D+ (PDT group). ANOVA/Tukey's tests were conducted to compare groups. A significant reduction (p <0.05) in cell viability was observed in the biofilm phase following photosensitization with all curcumin concentrations tested. To achieve significant bacterial reduction (p <0.05) in carious dentine, it was necessary to utilize 5.0 g/L of curcumin in association with blue light. No significant reduction was found for L-D+, supporting the absence of the drug's dark toxicity. S. mutans and L. acidophilus were susceptible to curcumin in the presence of blue light. However, due to light penetration and drug diffusion difficulties, these microorganisms within dentine carious lesions were less affected than they were in the biofilm phase. © 2013 Springer-Verlag London.
Resumo:
Among remarkable discoveries concerning propolis, such as antifungal, antiviral, and antioxidant activities, its anti-inflammatory, and mainly its antibacterial, properties deserve special attention when skin wound healing is concerned. Based on this and knowing the distinctive performance of bacterial (BC) membranes on wound healing, in this work it is proposed to demonstrate the potent antimicrobial activity and wound healing properties of a novel propolis containing biocellulose membrane. The obtained propolis/BC membrane was able to adsorb propolis not only on the surface, but also in its interstices demonstrated by scanning electron microscopy, X-ray diffraction, Fourier transform infrared (FT-IR) spectroscopy, and thermogravidimetric assays. Additionally, the polyphenolic compounds determination and the prominent antibacterial activity in the membrane are demonstrated to be dose dependent, supporting the possibility of obtaining propolis/BC membranes at the desired concentrations, taking into consideration its application and its skin residence time. Finally, it could be suggested that propolis/BC membrane may favor tissue repair in less time and more effectively in contaminated wounds. © 2013 Hernane da Silva Barud et al.
Resumo:
The aim of the present study was to evaluate the antimicrobial effect of antimicrobial photodynamic therapy (aPDT) in alveolar treatment of areas with induced periodontitis. Thirty male Wistar rats were subjected to ligature-induced periodontal disease (PD) in the first left inferior molars, while the right side molars did not receive ligatures. After 7 days of PD evolution, ligatures were removed from the left side, and the first left and right mandibular molars were extracted. Afterwards, animals were divided into groups according to the following treatments: control (C)-no treatment; mechanical debridement (MD)-mechanical debridement and irrigation with saline solution; and aPDT-mechanical debridement, irrigation with toluidine blue O (TBO), and 1 min of laser irradiation (GaAlAs, 660 nm, 30 mW, 32 J/cm2, 60 s). Ligatures were removed and samples of the alveolar content after extraction and after each treatment were collected for microbial processing by real-time polymerase chain reaction with specific primers for Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Treponema denticola. Data were submitted to statistical analysis by multiple comparison tests (McNemar test; p < 0.05). T. denticola was not found in the collected samples. A. actinomycetemcomitans and P. gingivalis were found in ligature samples. Tooth socket samples without periodontitis induction presented lesser microbial charge than samples with induced periodontitis (p < 0.05). aPDT significantly reduced A. actinomycetemcomitans levels on the left side (p < 0.05). It was concluded that aPDT was an effective antimicrobial treatment for tooth sockets in areas affected by induced periodontitis. © 2013 Springer-Verlag London.
Resumo:
Nocardia spp. infections can cause severe damage to the mammary gland due to suppurative pyogranulomatous lesions and lack of clinical cure in response to conventional antimicrobial therapy. Although Nocardia infections are considered relatively uncommon in cows, there has been an apparent worldwide increase in the incidence of bovine mastitis caused by Nocardia spp, perhaps due to environmental transmission of this ubiquitous pathogen. The objectives of present study were to determine: (i) species distribution of 80 Nocardia isolates involved in bovine mastitis (based on molecular methods); and (ii) antimicrobial susceptibility pattern of all isolates from three geographical areas in Brazil. In this study, Nocardia nova (80%) was the most frequently isolated species, followed by Nocardia farcinica (9%). Additionally, Nocardia puris, Nocardia cyriacigeorgica, Nocardia veterana, Nocardia africana, and Nocardia arthritidis were detected using 16S rRNA sequencing. This is apparently the first report of N. puris, N. veterana, N. cyriacigeorgica, N. arthritidis and N. africana in association with bovine mastitis. Based on the disk diffusion test, isolates were most frequently resistant to cloxacillin (75%), ampicillin (55%) and cefoperazone (47%), whereas few Nocardia spp. were resistant to amikacin, cefuroxime or gentamicin. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Oxacillin is an alternative for the treatment of Staphylococcus spp. infections; however, resistance to this drug has become a major problem over recent decades. The main objective of this study was to epidemiologically characterize coagulase-negative staphylococci (CoNS) strains recovered from blood of patients hospitalized in a Brazilian teaching hospital. Oxacillin resistance was analyzed in 160 strains isolated from blood culture samples by phenotypic methods, detection of the mecA gene, and determination of intermediate sensitivity to vancomycin on brain heart infusion agar supplemented with 4 and 6 μg/mL vancomycin. In addition, characterization of the epidemiological profile by staphylococcal cassette chromosome mec (SCC. mec) typing and clonal analysis by pulsed-field gel electrophoresis (PFGE) were performed. The mecA gene was detected in 72.5% of the isolates. Methicillin-resistant CoNS isolates exhibited the highest minimum inhibitory concentrations and multiresistance when compared to methicillin-susceptible CoNS strains. Typing classified 32.8% of the isolates as SCC. mec I and 50% as SCC. mec III. PFGE typing of the SCC. mec III Staphylococcus epidermidis isolates identified 6 clones disseminated in different wards that persisted from 2002 to 2009. The high oxacillin resistance rates found in this study and clonal dissemination in different wards highlight the importance of good practices in nosocomial infection control and of the rational use of antibiotic therapy in order to prevent the dissemination of these clones. © 2013 Elsevier Inc.
Resumo:
The biological activity of some new mixed silver-phosphane-thio-ligand complexes, with 1:1:2, 1:1:1 and 1:2:1 (Ag:phospine:ligand) compositions, have been examined. Ten compounds were prepared using a series of silver(I) salts [AgX, where X = NO3, ClO4, PF6 and Br], tertiary phosphines and the ligands thi-osemicarbazide, 2-(propan-2-ylidene) hydrazinecarbothioamide, and thiazolidine-2-thione. The syntheses were carried out under ambient conditions, and the ten complexes obtained were found to be light stable. All 10 compounds were characterized by elemental analysis, FTIR, and NMR spectroscopy, whereas nine compounds were characterized by X-ray diffraction analysis. The anti-proliferative activities were evaluated by minimum inhibitory concentration (MIC: lg/mL) in an aqueous suspension system and they all show promising potential activity against selective strains of Gram-positive and Gram-negative bacteria, fungous and Mycrobaterium tuberculosis H37Rv. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to evaluate the effects of Citrus limonum and Citrus aurantium essential oils (EOs) compared to 0.2% chlorhexidine (CHX) and 1% sodium hypochlorite (NaOCl) on multi-species biofilms formed by Candida albicans, Enterococcus faecalis and Escherichia coli. The biofilms were grown in acrylic disks immersed in broth, inoculated with microbial suspension (106 cells/mL) and incubated at 37°C / 48 h. After the biofilms were formed, they were exposed for 5 minutes to the solutions (n = 10): C. aurantium EO, C. limonum EO, 0.2% CHX, 1% NaOCl or sterile saline solution [0.9% sodium chloride (NaCl)]. Next, the discs were placed in sterile 0.9% NaCl and sonicated to disperse the biofilms. Tenfold serial dilutions were performed and the aliquots were seeded onto selective agar and incubated at 37°C / 48 h. Next, the number of colony-forming units per milliliter was counted and analyzed statistically (Tukey test, p ≤ 0.05). C. aurantium EO and NaOCl inhibited the growth of all microorganisms in multi-species biofilms. C. limonum EO promoted a 100% reduction of C. albicans and E. coli, and 49.3% of E. faecalis. CHX was less effective against C. albicans and E. coli, yielding a reduction of 68.8% and 86.7%, respectively. However, the reduction of E. faecalis using CHX (81.7%) was greater than that obtained using C. limonum EO. Both Citrus limonum and Citrus aurantium EOs are effective in controlling multi-species biofilms; the microbial reductions achieved by EOs were not only similar to those of NaOCl, but even higher than those achieved by CHX, in some cases.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bacterial cellulose is a highly hydrated pellicle made up of a random assembly of ribbon shaped fibers less than 5 nm wide. The unique properties provided by the nanometric structure have led to a number of diagnostic biological probes, display devices due to their unique size-dependent medical applications. Bacterial cellulose matrix extracellular is a novel biotechnology and unique medicine indicated for ultimate chronic wound treatment management, drug delivery, tissue engineering, skin cancer and offers an actual and effective solution to a serious medical and social problem and to promote rapid healing in lesions caused by Diabetic burns, ulcers of the lower limbs or any other circumstance in which there's epidermal or dermal loss. In this work, it is reported novel antimicrobial peptides (AMPs) bacterial cellulose/polyhexanide biguanide (PHMB) which are produced by symbioses culture between polyhexanide biguanide and green tea culture medium resulting in the pure 3-D structure consisting of an ultra-fine network of novel biocellulose/PHMB nanofibres matrix (2-8 nm), highly hydrated (99% in weight), and with higher molecular weight, full biocompatibility.