361 resultados para % dry weight
Resumo:
This work aimed to study weed response to fusel oil rate applied at early and late post-emergence. The following species were studied at late and early post-emergence: Ipomoea hederifolia, Ipomoea quamoclit, Euphorbia heterophylla, Digitaria spp., Cenchrus echinatus and Panicum maximum.. The experiment was arranged in a completely randomized design with six treatments and four replications. Fusel oil, an alcohol distillation byproduct, was applied at rates of 50, 125, 250, 375 and 500 L ha(-1), plus control without application. The plots were constituted by polyethylene containers with 3 L capacity, filled with topsoil land from a fallow area. Visual symptoms of intoxication were verified at 7 and 30 days after application (DAA) and dry weight at 30 DAA. The variables were submitted to variance analysis according to the design, adjusting the data to obtain the dose-response curve by polynomial regression. The studied species were susceptible only to the application of 500 L ha(-1) of fusel oil at early or late plant post-emergence. The species Digitaria spp. was susceptible and E. heterophylla tolerant to fusel oil applied at early post-emergence, while the other species were moderately tolerant. E. heterophylla was susceptible, Digitaria spp., C. echinatus and P. maximum moderately tolerant and I. hederifolia and I. quamoclit tolerant to fusel oil applied at late post-emergence.
Resumo:
Aiming to evaluate the effect of the pine bark substrate porosity on the development of the grumixama plant (Eugenia brasiliensis Lam.), an experiment was conducted in a greenhouse of the Escola Superior de Agricultura "Luiz de Queiroz"/USP, Piracicaba, Brazil. The treatments were: 100% ground pine bark without separation of particles; 100% pine bark of <= 0,1mm; 75% pine bark of <= 0,1mm + 25% between 0,1-4,0 mm; 50% of pine bark <= 0,1mm + 50% between 0,1-4,0 mm; 25% pine bark of <= 0,1mm + 75% between 0,1-4,0 mm and 100% pine bark of 0,1-4,0 mm. The evaluations (stem diameter, length and average dry weight of seedlings) were performed on the 90, 120 and 150(th) days after sowing. The low water absorption in the early stages and the low aeration of the roots promoted by the substrate, affect the development of the grumixama plant seedlings, that grow best when the total pore space of the substrate is less than 90% (v / v).
Resumo:
This work aimed to evaluate root growth, shoot development and nutrient absorption efficiency by rice cultivars Caiapo and Maravilha as affected by lime application. The experiment was carried out in a greenhouse, with treatments set up by Caiapo and Maravilha cultivars in combination with the base saturation (V%) of 10%, 40% and 70%. The experiment was in a randomized complete block design, with four replications. The number of tillers, root length, root dry matter, leaves and stems, leaf content and macronutrients absorption efficiency were evaluated. Comparing cultivars, Maravilha cultivar presented higher root dry weight, root length, number of stems, dry matter of stems and shoot than Caiapo cultivar, as well as accumulated more nutrients in the shoots. on the other hand, nutrient contents were higher in the cultivar Caiapo compared to Maravilha. Maravilha cultivar shows greater root and shoot growth while Caiapo shows higher nutrient absorption efficiency from the soil. The base saturation of 40% is the most effective for both cultivars.
Resumo:
Although research on the environmental impacts of using waste as a fertilizer is of great importance, the basic principle for using a product as fertilizer is that it should provide nutrients for plants without causing any harm to them. The objective of this study was to evaluate the agronomic traits (number of nodes, plant height, leaf number, yield, and protein content of grains) and the nutritional status of corn treated with sewage sludge. The experiment was conducted in the municipality of Jaboticabal in a Red Latosol. A randomized block design with four treatments (0, 55, 110, and 167.5 Mg ha(-1) of sewage sludge) and five repetitions was used. At 30 days after emergence (DAE), the dose of 110 Mg ha(-1) dry weight presented greater values for plant height, leaf number and stem diameter. At 60 DAE, the treatments did not affect the agronomic traits. No influence from the treatments tested was observed for protein content of grains and yield. The dose of 167.5 Mg ha(-1) showed greater weight of 100 seeds. All treatments showed nutritional imbalances. This study confirmed the agricultural potential of sewage sludge as a source of nutrients.
Resumo:
Marketable chrysanthemums were produced in several different peat types. Only the plants in one of the dredged frozen black peats and one of the milled white peats had a significant lower shoot dry weight than those in one of the sod and milled white peats, respectively. As the N-contents of the fertilized peats show neither deficiency nor excess in nutrient supply, possibly they are not the reason for the differences in shoot dry weight. The air capacity, which is extremely low in both dredged frozen black peats and dropped further during the cultivation period due to decomposition, also cannot explain the differences in shoot dry weight sufficiently (R-2=0.44*; n=12). A close linear negative correlation (R-2=0.77**; n=12) was found between the CAT (VDLUFA) soluble Fe and the shoot dry weight. Therefore, the Fe-contents might be a quality factor of peat to be used as a growing medium.
Resumo:
The objective of this study was to evaluate the effect of mechanical damage and physiological events in harvesting and processing of soybean cv. Mosoy RR 8000. The samples were taken during harvest manual, mechanical harvesting and during processing (receipt, pre-cleaning, cleaning, spiral separator, classification and gravity table). The physiological and physical quality was analized through the purity, germination, vigor (first germination count, seedling dry matter, accelerated aging, electrical conductivity, tetrazolium, mechanical damages and seedling field emergence) tests. The statistical design used was a entirely randomized with nine treatments (9 sampling points) with 4 replications, being the means compared by the Tuckey test at 5% probability. In the purity and seedling field emergence were observed highly significative difference between the sampling process, also this differences were obtained the first germination count, seedling dry weight matter, accelerated aging and electrical conductivity which showed smaller results for the mechanical harvesting when compared with the manual harvesting. The germination was obtained differences at 5% for the manual harvesting in relation to the mechanical harvesting were obtained smaller results, being the main cause of reducing the soybean seed quality, when compared with the manual harvesting.
Resumo:
It is necessary to establish adequate row spacings and plant populations for recently developed short height castor (Ricinus communis L) cultivars. This work aimed to evaluate the growth, yield components, and yield of short castor cultivar IAC 2028 as affected by row spacing and plant population, in summer cropping season. The experiments were carried out in 2007/08 and 2008/09 cropping seasons, in Botucatu County, São Paulo State, Brazil. A randomized complete block design in a split-plot scheme with four replications was used. Treatments assigned to plots were four row spacing (0.45, 0.60, 0.75, and 0.90m) and subplots were assigned to four levels of plant populations (25000, 40000, 55000, and 70000 plants/ha). The increase of plant population decreased plants survival rate, shoot dry weight, stem diameter, number of racemes per plant, number of fruits per raceme, and 100-grains weight. In higher plant populations, the best arrangement of plants, provided by the narrower row spacing (0.45m), promoted higher grain and oil yields. Increasing plant population increased grain and oil yields only when was used the narrower row spacing.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The organic production systems based on natural processes do not allow the use of synthetic fertilizers with a high solubility, so it is required the use of technologies in accordance with the organic production legislation in order to make the technical, economical and environmental sustainable activities viable. To evaluate the effects of the usage of mineral and organic natural fertilizers, associated with liquid biofertilizers (BLE= enriched liquid biofertilizer and BF= leaf biofertilizers) on the production of the sugar apple fruit crop Annona squamosa L., replacing totally the chemical fertilizers, used by conventional farming systems, a nine year old orchard was driven in the irrigated plot n degrees 1295, irrigated project Nilo Coelho, district of Petrolina - PE. The experiment was carried out from September 2005 to February 2006. The experimental design was done through randomized blocks with eight treatments and four replications in plots of three plants each, with 96 plants in total. The treatments were the following: T(1) - plants with no fertilizer; T(2) - 60 g de N + 32 g de P(2)O(5) + 48 g de K(2)O; T(3) - 90g de N + 32 g de P(2)O(5) + 48 g de K(2)O; T(4) - 30 g de N + 32 g de P(2)O(5) + 48 g de K(2)O + 15 L de BLE + BF a 5 %; T(5) - 60g de N + 32 g de P(2)O(5) + 48 g de K(2)O + 30 L de BLE + BF a 5 %; T(6)- 90g de N + 32 g de P(2)O(5) + 48 g de K(2)O + 45 L de BLE + BF a 5 %; T(7) - 120g de N + 32 g de P(2)O(5) + 48 g de K(2)O + 60 L de BLE + BF a 5 %; T(8) - 150 g de N + 32 g de P(2)O(5) + 48 g de K(2)O + 75 L de BLE + BF a 5 % The fruit growth analyses (diameter and average length), total yield, productivity, average fruit weight, average number of fruits, fresh weight of the skin and pulp and dry weight of the fruits were used to evaluate the experiment. The results were relevant to the total production, fresh weight of the skin and dry weight of the fruits. The use of organominerals associated with liquid fertilizers increased significantly the productivity in values ranging from 10.44% (T(5) = 1.98 t ha(-1)) to 24.52 % (T(7) = 12.34 %). The treatment T(3) stood out (90g de N + 32g de P(2)O(5) + 48g de K(2)O) with a higher production than the control. The fruit weight increased in the fertilized treatments, with values increasing from treatment (T(2) = 5.26 %) to the treatment (T(7) = 12.34 %) in relation to the control. The fruit development was characterized by an average growth increase of 82 % in length and 84 % in diameter until the 56(th) day, with a sigmoidal growth pattern.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Salt stress decreases the osmotic potential of soil solution causing water stress, causing toxic effects in the plants resulting in injuries on the metabolism and nutritional disorders, thus compromising the plant growth, resulting in lower production. The calcium silicate and magnesium can perform the same function as limestone, besides providing silicon to plants, may also contribute to the resistance of plants to salt stress. Thus, the objective of this study was to evaluate the effect of calcium and magnesium silicate on the growth of the castor oil plant BRS Energia cultivated under saline conditions. This study evaluated plant height, stem diameter, number of leaves, leaf area, dry weight of shoot and root, and soil chemical characteristics. There was no interaction between factors of salinity level and of silicate level regarding the evaluated variables. There was a direct relationship between salinity levels and plant growth in height and stem diameter. The K concentration in soil were affected by salinity levels.
Resumo:
Pigeonpea protein concentrate was prepared from full-fat decorticated raw flour. The water holding capacity of pigeonpea flour of decorticated seeds is 75% and its oil absorption capacity a 30%. The water holding capacity of the protein concentrate is three times the dry weight. The oil absorption capacity of the concentrate was 1,29 mL oil/g protein. The whipping capacity of the pigeonpea flour and its protein concentrate were evaluated.
Resumo:
Larvae of an estuarine grapsid crab Chasmagnathus granulata Dana 1851, from temperate and subtropical regions of South America, were reared in seawater (32 ‰) at five different constant temperatures (12, 15, 18, 21, 24 °C). Complete larval development from hatching (Zoea I) to metamorphosis (Crab I) occurred in a range from 15 to 24 °C. Highest survival (60% to the first juvenile stage) was observed at 18°C, while all larvae reared at 12°C died before metamorphosis. The duration of development (D) decreased with increasing temperature (T). This relationship is described for all larval stages as a power function (linear regressions after logarithmic transformation of both D and T). The temperature-dependence of the instantaneous developmental rate (D-1) is compared among larval stages and temperatures using the Q10 coefficient (van't Hoff's equation). Through all four zoeal stages, this index tends to increase during development and to decrease with increasing T (comparing ranges 12-18, 15-21, 18-24 °C). In the Megalopa, low Q10 values were found in the range from 15 to 24 °C. In another series of experiments, larvae were reared at constant 18°C and their dry weight (W) and respiratory response to changes in T were measured in all successive stages during the intermoult period (stage C) of the moulting cycle. Both individual and weight-specific respiration (R, QO2) increased exponentially with increasing T. At each temperature, R increased significantly during growth and development through successive larval stages. No significantly different QO2 values were found in the first three zoeal stages, while a significant decrease with increasing W occurred in the Zoea IV and Megalopa. As in the temperature-dependence of D, the respiratory response to changes in temperature (Q10) depends on both the temperature range and the developmental stage, however, with different patterns. In the zoeal stages, the respiratory Q10 was minimum (1.7-2.2) at low temperatures (12-18 °C), but maximum (2.2-3.0) at 18-24 °C. The Megalopa, in contrast, showed a stronger metabolic response in the lower than in the upper temperature range (Q10 = 2.8 and 1.7, respectively). We interpret this pattern as an adaptation to a sequence of temperature conditions that should typically be encountered by C. granulata larvae during their ontogenetic migrations: hatching in and subsequent export from shallow estuarine lagoons, zoeal development in coastal marine waters, which are on average cooler, return in the Megalopa stage to warm lagoons. We thus propose that high metabolic sensitivity to changes in temperature may serve as a signal stimulating larval migration, so that the zoeae should tend to leave warm estuaries and lagoons, whereas the Megalopa should avoid remaining in the cooler marine waters and initiate its migration towards shallow coastal lagoons.
Resumo:
The present work studies Ca, B and Zn omission on the development of soybean plants (Glycine max (L.) Merrill cv Santa Rosa). The experiment was carried out as hydroponic culture, with complete Hoagland & Arnon nutrient solution nr. 2 (C), lacking calcium (-Ca), lacking boron (-B) or lacking zinc (-Zn), a total of 4 treatments. Seven samplings were made to determine: total dry matter (g), root dry matter (g), stem dry matter (g) and leaf dry matter (g). Results showed that Ca and B omissions decreased dry weight. Lack of Zn did not affect dry weight.
Resumo:
The interactions of two fungal biocontrol agents, Alternaria cassiae and Pseudocercospora nigricans, and soybean planting density on sicklepod mortality and dry weight were studied in the field over 2 yr. The experimental field was divided into three equal areas: one without soybean and two where the soybean was sown in densities of 20 and 36 seeds per meter row with a 0.95-m row spacing. The fungi were sprayed alone or in a mixture at three growth stages of sicklepod plants grown at three levels of crop interference resulting from the three soybean planting densities. The fungal treatments were: an untreated control, A. cassiae (105 spores/m2), P. nigricans (3.3 g mycelium/m2), and the mixture of these two fungi. Sicklepod was at the cotyledonary leaf, two-leaf, and four-leaf stages when treated. Alternaria cassiae was most effective in reducing both sicklepod survival and dry weight. The mixture of P. nigricans and A. cassiae was generally comparable to but not better than A. cassiae alone in killing the weed (mortality) and reducing its growth (dry weight). Soybean density did not have significant effects on the mortality or the dry weight of sicklepod. Thus, there is no advantage to combining the highly effective biocontrol agent A. cassiae with the less effective P. nigricans or with soybean interference to control sicklepod. However, the results validate the efficacy of A. cassiae by itself as a bioherbicide.