38 resultados para water exchange
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O estudo foi efetuado durante o período de chuva (dezembro-fevereiro) em seis viveiros de produção semi-intensiva de peixes, a fim de avaliar o efeito da chuva na qualidade da água de viveiros que apresentam fluxo contínuo de água, a qual é passada de um viveiro para outro sem tratamento prévio. Foram amostrados oito pontos de coleta nas saídas dos viveiros. O viveiro P1 (próximo à nascente) apresentou as menores concentrações físicas e químicas da água e as maiores no viveiro P4 (considerado um ponto crítico recebendo material alóctone proveniente de outros viveiros e do escoamento do setor de criação de rãs). A disposição seqüencial dos viveiros estudados promoveu aumento nas concentrações dos nutrientes, clorofila-a e condutividade. As chuvas características desta época do ano aumentaram o fluxo de água nos viveiros e conseqüentemente, carreando material particulado e dissolvido de um viveiro para outro e, promovendo um aumento das variáveis limnológicas em direção do P3 ao P6. Os resultados sugerem que a chuva no período de estudo afetou positivamente a qualidade da água dos viveiros estudados, porém, como os sistemas analisados estão dispostos em distribuição seqüencial e escoamento constante da água de viveiros e tanques paralelos sem tratamento prévio, cuidados devem ser averiguados para que o aumento do fluxo de água provocado pelas chuvas não tenha efeito adverso nos viveiros estudados.
Root volume and dry matter of peanut plants as a function of soil bulk density and soil water stress
Resumo:
Soil compaction may be defined as the pressing of soil to make it denser. Soil compaction makes the soil denser, decreases permeability of gas and water exchange as well as alterations in thermal relations, and increases mechanical strength of the soil. Compacted soil can restrict normal root development. Simulations of the root restricting layers in a greenhouse are necessary to develop a mechanism to alleviate soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. This experiment aimed to assess peanut (Arachis hypogea) root volume and root dry matter as a function of bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6g cm-3), and two levels of the soil water content (70 and 90% of field capacity) were used. Treatments were arranged as completely randomized design, with four replications in a 3×2 factorial scheme. The result showed that peanut yield generally responded favorably to subsurface compaction in the presence of high mechanical impedance. This clearly indicates the ability of this root to penetrate the hardpan with less stress. Root volume was not affected by increase in soil bulk density and this mechanical impedance increased root volume when roots penetrated the barrier with less energy. Root growth below the compacted layer (hardpan), was impaired by the imposed barrier. This stress made it impossible for roots to grow well even in the presence of optimum soil water content. Generally soil water content of 70% field capacity (P<0.0001) enhanced greater root proliferation. Nonetheless, soil water content of 90% field capacity in some occasions proved better for root growth. Some of the discrepancies observed were that mechanical impedance is not a good indicator for measuring root growth restriction in greenhouse. Future research can be done using more levels of water to determine the lowest soil water level, which can inhibit plant growth.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Water quality of a fish pond used by UNESP, at Jaboticabal, SP, Brazil, for both fishing and irrigation has been evaluated according to certain limnological parameters and to its phytoplankton composition. During the year, four sampling sites were assigned at the pond: P(1)=inlet water in the pond; P(2)=inlet water from a shrimp pond; P(3)=irrigation spot; and P(4)=outlet water (water flowing directly into another pond). The collected data show a water pond with high concentration of nutrients and chlorophyll-a, and high values of electrical conductivity, total hardness and total dissolved solids, proceeding from the above pond. These factors affected substantially some biological parameters, such as chlorophyll-a and phytoplankton. In P(3), whereas class Zygnematophyceae showed the highest specimens richness, with 34.01%, the Chlorophyceae, that had the highest number of genera, comprehended 33.52% of the total number of individuals. The use of the water fish pond for irrigation must be re-evaluated, due to eutrophic conditions of the water, the presence of potentially toxic cyanobacteria, so as the proper management employed.
Resumo:
Avaliou-se o desempenho de tilápias-do-nilo (Oreochromis niloticus) produzidas em tanque-rede, providas de dispensadores automáticos de ração, alimentadas em diferentes frequências - uma vez por hora e a cada duas horas - e períodos - durante o dia, à noite ou ambos. Dezoito tanques-rede de 1.0m³ foram colocados em um tanque de 2000m² com dois metros de profundidade e renovação de água de 5%. Cento e setenta tilápias, com peso inicial de 16.0±4.9g foram distribuídas em cada tanque-rede de 1m³ e a taxa alimentar foi ajustada a cada 21 dias junto com as biometrias. As medidas foram coletadas de março a julho (outono e inverno). Observou-se diferença significativa para peso final (P<0.05) entre os tratamentos. O aumento da frequência alimentar melhorou o desempenho produtivo de tilápias-do-nilo produzidas em tanque-rede e permitiu melhor manejo alimentar. A melhor conversão alimentar para alta frequência, 24 vezes dia-1, pode resultar em uma economia de até 360kg de ração por tonelada de peixe produzido, melhorando a sustentabilidade econômica para produção de tilápia e sugerindo menor poluição ambiental.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The chemical modulation of agonistic behavior and conspecific recognition were tested in juveniles of the fish Nile tilapia, Oreochromis niloticus (L.). After a 7-day isolation period, the fish were grouped (four individuals per aquarium) for 7 days. Then fish of alpha and beta ranks (previously matched for similar size) were paired in a neutral territory for analysis of their agonistic interaction. Pairs composed of alpha and beta fish were established with either fish from the same group (familiar) or from two different groups (unfamiliar). The pairs were tested in contiguous compartments, either with water exchange between the compartments or in the absence of water exchange. In each condition the fish were separated by a transparent glass partition. Twelve pairs were tested in each experimental condition. Fish behavior was videotaped and the following variables were analyzed: (a) frequency of and time spent in agonistic patterns, (b) latency to start fighting, and (c) duration of swimming. Water exchange between compartments decreased agonistic interactions. This effect, however, was more pronounced in pairs of fish coming from the same group (in this case, subordinate fish spent less time in confrontations than dominant ones). We conclude that chemical communication decreases aggression in this species by (1) inducing an alarm reaction and (2) increasing conspecific recognition (thus stabilizing the dominance hierarchy). (C) 1997 Elsevier B.V.
Resumo:
Studies to determine suitable levels of intensification are essential for developing sustainable aquaculture. The objective of this study was to evaluate the quality of effluents discharged from ponds stocked with 10 (D10), 20 (D20), 40 (D40), and 80 (D80) postlarvae of Macrobrachium amazonicum/m2. Intake and effluent water samples were taken throughout a 5.5-mo grow-out cycle. In that study, twelve 0.01-ha earthen ponds were stocked postlarvae with 0.01g. Average water exchange rate was 15%/d; water was discharged from the bottom of the ponds. Prawns were fed a commercial feed with 38% crude protein according to their biomass (3-10%) and the concentration of dissolved oxygen (DO). In our research, temperature, turbidity, total suspended solids, conductivity, DO, pH, biochemical oxygen demand (BOD), chemical oxygen demand (COD), N-ammonia, N-nitrite, N-nitrate, N-Kjeldahl nitrogen, total phosphorus, and soluble orthophosphate were measured every 15d throughout the experiment in the early morning (0630 to 0730h). Turbidity was lower in D10 than in D20 and D40 and total phosphorus was higher in D80 than in D10 and D20. An analysis of principal components comparing treatments and intake water showed three groups: intake, D10 and a cluster of D20, D40, and D80. On the basis of the water characteristics found in our study it appears that the farming of M. amazonicum is likely to have a low environmental impact, at least up to a stocking density of 80prawns/m2. © by the World Aquaculture Society 2013.
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Net photosynthesis (A) and transpiration rates (E), stomatal conductance (g), water use efficiency (WUE), intrinsic water use efficiency (IWUE) and internal leaf CO2 concentration (C) in response to different vapor pressure deficit (1.2 and 2.5 kPa) were investigated in 'Pera' sweet orange plants affected by citrus variegated chlorosis (CVC), a disease caused by Xylella fastidiosa. All plants were well watered and leaf water potential (Pw) was also measured by the psychrometric technique. Results showed that healthy plants responded to higher vapor pressure deficit (VPD), lowering its net photosynthesis and transpiration rates, and stomatal conductance. However, diseased plants presented no clear response to VPD, showing lower A, E and g for both VPDs studied and very similar values to these variables in healthy plants at the highest VPD. Internal leaf CO2 concentration also decreased for healthy plants when under the highest VPD, and surprisingly, the same pattern of response was found in plants with CVC. These results, the lower Psi(w) and higher WUE values for diseased plants, indicated that this disease may cause stomatal dysfunction and affect the water resistance through xylem vessels, which ultimately may play some role in photosynthetic metabolism. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The effects and interaction of drought and UV-B radiation were studied in sunflower plants (Helianthus annuus L. var. Catissol-01), growing in a greenhouse under natural photoperiod conditions. The plants received approximately 1.7 W m(-2) (controls) or 8.6 W m(-2) (+UV-B) of UV-B radiation for 7 h per day. The UV-B and water stress treatments started 18 days after sowing. After a period of 12 days of stress, half of the water-stressed plants (including both UV-B irradiated or non-irradiated) were rehydrated. Both drought and UV-B radiation treatments resulted in lower shoot dry matter per plant, but there was no significant interaction between the two treatments. Water stress and UV-B radiation reduced photosynthesis, stomatal conductance and transpiration. However, the amplitude of the effects of both stressors was dependent on the interactions. This resulted in alleviation of the negative effect of drought on photosynthesis and transpiration by UV-B radiation as the water stress intensified. Intercelluar CO(2) concentration was initially reduced in all treatments compared to control plants but it increased with time. Photosynthetic pigments were not affected by UV-B radiation. Water stress reduced photosynthetic pigments only under high UV-B radiation. The decrease was more accentuated for chlorophyll a than for chlorophyll b. As a measure for the maximum efficiency of photosystem II in darkness F (v)/F (m) was used, which was not affected by drought stress but initially reduced by UV-B radiation. Independent of water supply, UV-B radiation increased the activity of pirogalol peroxidase and did not increase the level of malondialdehyde. on the other hand, water stress did not alter the activity of pirogalol peroxidase and caused membrane damage as assessed by lipid peroxidation. The application of UV-B radiation together with drought seemed to have a protective effect by lowering the intensity of lipid peroxidation caused by water stress. The content of proline was not affected by UV-B radiation but was increased by water stress under both low and high UV-B radiation. After 24 h of rehydration, most of the parameters analyzed recovered to the same level as the unstressed plants.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)