125 resultados para variable sample size
Resumo:
The usual practice in using a control chart to monitor a process is to take samples of size n from the process every h hours This article considers the properties of the XBAR chart when the size of each sample depends on what is observed in the preceding sample. The idea is that the sample should be large if the sample point of the preceding sample is close to but not actually outside the control limits and small if the sample point is close to the target. The properties of the variable sample size (VSS) XBAR chart are obtained using Markov chains. The VSS XBAR chart is substantially quicker than the traditional XBAR chart in detecting moderate shifts in the process.
Resumo:
The VSS X chart, dedicated to the detection of small to moderate mean shifts in the process, has been investigated by several researchers under the assumption of known process parameters. In practice, the process parameters are rarely known and are usually estimated from an in-control Phase I data set. In this paper, we evaluate the (run length) performances of the VSS chart when the process parameters are estimated, we compare them in the case where the process parameters are assumed known and we propose specific optimal control chart parameters taking the number of Phase I samples into account.
Resumo:
The usual practice in using a control chart to monitor a process is to take samples of size n from the process every h hours. This article considers the properties of the X̄ chart when the size of each sample depends on what is observed in the preceding sample. The idea is that the sample should be large if the sample point of the preceding sample is close to but not actually outside the control limits and small if the sample point is close to the target. The properties of the variable sample size (VSS) X̄ chart are obtained using Markov chains. The VSS X̄ chart is substantially quicker than the traditional X̄ chart in detecting moderate shifts in the process.
Resumo:
Recent theoretical studies have shown that the X̄ chart with variable sampling intervals (VSI) and the X̄ chart with variable sample size (VSS) are quicker than the traditional X̄ chart in detecting shifts in the process. This article considers the X̄ chart with variable sample size and sampling intervals (VSSI). It is assumed that the amount of time the process remains in control has exponential distribution. The properties of the VSSI X̄ chart are obtained using Markov chains. The VSSI X̄ chart is even quicker than the VSI or VSS X̄ charts in detecting moderate shifts in the process.
Resumo:
Recent studies have shown that the X̄ chart with variable sampling intervals (VSI) and/or with variable sample sizes (VSS) detects process shifts faster than the traditional X̄ chart. This article extends these studies for processes that are monitored by both the X̄ and R charts. A Markov chain model is used to determine the properties of the joint X and R charts with variable sample sizes and sampling intervals (VSSI). The VSSI scheme improves the joint X̄ and R control chart performance in terms of the speed with which shifts in the process mean and/or variance are detected.
Resumo:
O uso dos tamanhos de amostras adequados nas unidades experimentais melhora a eficiência da pesquisa. Foi conduzido um experimento no ano agrícola 2004/2005 em Santa Maria, Rio Grande do Sul, com o objetivo de estimar o tamanho de amostra para o comprimento de espiga, o diâmetro de espiga e de sabugo, o peso da espiga, dos grãos por espiga, do sabugo e de 100 grãos, o número de fileiras de grãos por espiga, o número de grãos por espiga e o comprimento dos grãos de dois híbridos simples (P30F33 e P Flex), dois híbridos triplos (AG8021 e DG501) e dois híbridos duplos (AG2060 e DKB701) de milho. Para uma precisão de 5% (D5), características de peso (peso de espiga despalhada, de grãos, de sabugo e de 100 grãos) podem ser amostradas com 21 espigas, características de tamanho (comprimento de espiga e de grão, diâmetro de espiga e de sabugo) com oito espigas, e dados de contagem (número de grãos e de fileiras) com 13 espigas. O tamanho de amostra é variável em função da característica da espiga e do tipo de híbrido: simples, triplo ou duplo. A variabilidade genética existente entre os híbridos de milho, na forma crescente: simples, triplo e duplo, não reflete na mesma ordem no tamanho de amostra de caracteres da espiga.
Resumo:
Recent studies have shown that the (X) over bar chart with variable sampling intervals (VSI) and/or with variable sample sizes (VSS) detects process shifts faster than the traditional (X) over bar chart. This article extends these studies for processes that are monitored by both the (X) over bar and R charts. A Markov chain model is used to determine the properties of the joint (X) over bar and R charts with variable sample sizes and sampling intervals (VSSI). The VSSI scheme improves the joint (X) over bar and R control chart performance in terms of the speed with which shifts in the process mean and/or variance are detected.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this article we consider a control chart based on the sample variances of two quality characteristics. The points plotted on the chart correspond to the maximum value of these two statistics. The main reason to consider the proposed chart instead of the generalized variance |S| chart is its better diagnostic feature, that is, with the new chart it is easier to relate an out-of-control signal to the variables whose parameters have moved away from their in-control values. We study the control chart efficiency considering different shifts in the covariance matrix. In this way, we obtain the average run length (ARL) that measures the effectiveness of a control chart in detecting process shifts. The proposed chart always detects process disturbances faster than the generalized variance |S| chart. The same is observed when the size of the samples is variable, except in a few cases in which the size of the samples switches between small size and very large size.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this article, we consider the T(2) chart with double sampling to control bivariate processes (BDS chart). During the first stage of the sampling, n(1) items of the sample are inspected and two quality characteristics (x; y) are measured. If the Hotelling statistic T(1)(2) for the mean vector of (x; y) is less than w, the sampling is interrupted. If the Hotelling statistic T(1)(2) is greater than CL(1), where CL(1) > w, the control chart signals an out-of-control condition. If w < T(1)(2) <= CL(1), the sampling goes on to the second stage, where the remaining n(2) items of the sample are inspected and T(2)(2) for the mean vector of the whole sample is computed. During the second stage of the sampling, the control chart signals an out-of-control condition when the statistic T(2)(2) is larger than CL(2). A comparative study shows that the BDS chart detects process disturbances faster than the standard bivariate T(2) chart and the adaptive bivariate T(2) charts with variable sample size and/or variable sampling interval.
Resumo:
When joint (X) over bar and R charts are in use, samples of fixed size are regularly taken from the process, and their means and ranges are plotted on the (X) over bar and R charts, respectively. In this article, joint (X) over bar and R charts have been used for monitoring continuous production processes. The sampling is performed, in two stages. During the first stage, one item of the sample is inspected and, depending on the result, the sampling is interrupted if the process is found to be in control; otherwise, it goes on to the second stage, where the remaining sample items are inspected. The two-stage sampling procedure speeds up the detection of process disturbances. The proposed joint (X) over bar and R charts are easier to administer and are more efficient than the joint (X) over bar and R charts with variable sample size where the quality characteristic of interest can be evaluated either by attribute or variable. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
A standard (X) over bar chart for controlling the process mean takes samples of size no at specified, equally-spaced, fixed-time points. This article proposes a modification of the standard (X) over bar chart that allows one to take additional samples, bigger than no, between these fixed times. The additional samples are taken from the process when there is evidence that the process mean moved from target. Following the notation proposed by Reynolds (1996a) and Costs (1997) we shortly call the proposed (X) over bar chart as VSSIFT (X) over bar chart: where VSSIFT means variable sample size and sampling intervals with fixed times. The (X) over bar chart with the VSSIFT feature is easier to be administered than a standard VSSI (X) over bar chart that is not constrained to sample at the specified fixed times. The performances of the charts in detecting process mean shifts are comparable.
Resumo:
A standard X̄ chart for controlling the process mean takes samples of size n0 at specified, equally-spaced, fixed-time points. This article proposes a modification of the standard X chart that allows one to take additional samples, bigger than n0, between these fixed times. The additional samples are taken from the process when there is evidence that the process mean moved from target. Following the notation proposed by Reynolds (1996a) and Costa (1997) we shortly call the proposed X chart as VSSIFT X chart where VSSIFT means variable sample size and sampling intervals with fixed times. The X chart with the VSSIFT feature is easier to be administered than a standard VSSI X chart that is not constrained to sample at the specified fixed times. The performances of the charts in detecting process mean shifts are comparable. Copyright © 1998 by Marcel Dekker, Inc.
Resumo:
In this article, we consider the synthetic control chart with two-stage sampling (SyTS chart) to control bivariate processes. During the first stage, one item of the sample is inspected and two correlated quality characteristics (x;y) are measured. If the Hotelling statistic T1 2 for these individual observations of (x;y) is lower than a specified value UCL 1 the sampling is interrupted. Otherwise, the sampling goes on to the second stage, where the remaining items are inspected and the Hotelling statistic T2 2 for the sample means of (x;y) is computed. When the statistic T2 2 is larger than a specified value UCL2, the sample is classified as nonconforming. According to the synthetic control chart procedure, the signal is based on the number of conforming samples between two neighbor nonconforming samples. The proposed chart detects process disturbances faster than the bivariate charts with variable sample size and it is from the practical viewpoint more convenient to administer.