78 resultados para thermostable CGTase


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A cyclomaltodextrin glucanotransferase (E.C. 2.4.1.19) from a newly isolated alkalophilic and moderately thermophilic Paenibacillus campinasensis strain H69-3 was purified as a homogeneous protein from culture supernatant. Cyclomaltodextrin glucanotransferase was produced during submerged fermentation at 45 degrees C and purified by gel filtration on Sephadex G50 ion exchange using a Q-Sepharose column and ion exchange using a Mono-Q column. The molecular weight of the purified enzyme was 70 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the pI was 5.3. The optimum pH for enzyme activity was 6.5, and it was stable in the pH range 6.0-11.5. The optimum temperature was 65 degrees C at pH 6.5, and it was thermally stable up to 60 degrees C without substrate during 1 h in the presence of 10 mm CaCl2. The enzyme activity increased in the presence of Co2+, Ba2+, and Mn2+. Using maltodextrin as substrate, the K-m and K-cat were 1.65 mg/mL and 347.9 mu mol/mg.min, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclodextrins ( CDs) are cyclic oligasaccharides composed by D- glucose monomers joined by alpha- 1,4-D glicosidic linkages. The main types of CDs are alpha-,beta-and gamma-CDs consisting of cycles of six, seven, and eight glucose monomers, respectively. Their ability to form inclusion complexes is the most important characteristic, allowing their wide industrial application. The physical property of the CD-complexed compound can be altered to improve stability, volatility, solubility, or bio-availability. The cyclomaltodextrin glucanotransferase ( CGTase, EC 2.4.1.19) is an enzyme capable of converting starch into CD molecules. In this work, the CGTase produced by Bacillus clausii strain E16 was used to produce CD from maltodextrin and different starches ( commercial soluble starch, corn, cassava, sweet potato, and waxy corn starches) as substrates. It was observed that the substrate sources influence the kind of CD obtained and that this CGTase displays a beta- CGTase action, presenting a better conversion of soluble starch at 1.0%, of which 80% was converted in CDs. The ratio of total CD produced was 0: 0.89: 0.11 for alpha/beta/gamma. It was also observed that root and tuber starches were more accessible to CGTase action than seed starch under the studied conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extracellular (conidial) and an intracellular (mycelial) alkaline phosphatase from the thermophilic fungus Scytalidium thermophilum were purified by DEAE-cellulose and Concanavalin A-Sepharose chromatography. These enzymes showed allosteric behavior either in the presence or absence of MgCl2, BaCl2, CuCl2, and ZnCl2. All of these ions increased the maximal velocity of both enzymes. The molecular masses of the conidial and mycelial enzymes, estimated by gel filtration, were 162 and 132 kDa, respectively. Both proteins migrated on SDS-PAGE as a single polypeptide of 63 and 58.5 kDa, respectively, suggesting that these enzymes were dimers of identical subunits. The best substrate for the conidial and mycelial phosphatases was p-nitrophenylphosphate, but,beta -glycerophosphate and other phosphorylated compounds also served as substrates. The optimum pH for the conidial and mycelial alkaline phosphatases was 10.0 and 9.5 in the presence of AMPOL buffer, and their carbohydrate contents were about 54% and 63%, respectively. The optimum temperature was 70-75 degreesC for both activities. The enzymes were fully stable up to 1 h at 60 degreesC. These and other properties suggested that the alkaline phosphatases of S. thermophilum might be suitable for biotechnological applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhizopus microsporus var. rhizopodiformis produced high levels of alpha-amylase and glucoamylase under solid state fermentation, with several agricultural residues, such as wheat bran, cassava flour, sugar cane bagasse, rice straw, corncob and crushed corncob as carbon sources. These materials were humidified with distilled water, tap water, or saline solutions-Segato Rizzatti (SR), Khanna or Vogel. The best substrate for amylase production was wheat bran with SR saline solution (1:2 v/v). Amylolytic activity was still improved (14.3%) with a mixture of wheat bran, corncob, starch and SR saline solution (1:1:0.3:4.6 w/w/w/v). The optimized culture conditions were initial pH 5, at 45 degrees C during 6 days and relative humidity around 76%. The crude extract exhibited temperature and pH optima around 65 degrees C and 4-5, respectively. Amylase activity was fully stable for 1 h at temperatures up to 75 degrees C, and at pH values between 2.5 and 7.5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pectin lyase (Pl) and polygalacturonase (Pg) production by Thermoascus aurantiacus 179-5 was carried out by means of solid-state determination using orange bagasse and wheat bran as a carbon sources. Pg and Pl had optimum activity at pH 5.0 and 10.5 respectively. Maximal activity of the enzymes were determined at 65 °C. Pg was stable in the acidic to neutral pH range and at 60 °C for 1 h. whereas Pl was stable at acidic pH and at 60 °C for 5 h. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alkalophilic Bacillus circulans D1 was isolated from decayed wood. It produced high levels of extracellular cellulase-free xylanase. The enzyme was thermally stable up to 60°C, with an optimal hydrolysis temperature of 70°C. It was stable over a wide pH range (5.5-10.5), with an optimum pH at 5.5 and 80% of its activity at pH 9.0. This cellulase-free xylanase preparation was used to biobleach kraft pulp. Enzymatic treatment of kraft pulp decreased chlorine dioxide use by 23 and 37% to obtain the same kappa number (κ number) and brightness, respectively. Separation on Sephadex G-50 isolated three fractions with xylanase activity with distinct molecular weights.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GCTase production by a new strain of Bacillus alkalophillc CGII isolated from Brazilian wastewater of manioc flour industry was examined. The growth medium used was composed by 1.5% starch, 1.5% nitrogen and 1% Na 2CO3. Higher activity was obtained with starch, maltodextrin and galactose. When glucose was added to the medium, no enzyme production was observed. High enzyme activity and growth were reached when aeration was increased (88.6 U/mL). The enzyme characterization showed an optimum pH and temperature 8.0 and 55°C for starch hydrolyses, respectively. Mg+ and Ca++ showed small activation; however, Hg + and Cu+ showed a strong enzyme inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The superoxide dismutase (TfSOD) gene from the extremely thermophilic bacterium Thermus filiformis was cloned and expressed at high levels in mesophilic host. The purified enzyme displayed approximately 25 kDa band in the SDS-PAGE, which was further confirmed as TfSOD by mass spectrometry. The TfSOD was characterized as a cambialistic enzyme once it had enzymatic activity with either manganese or iron as cofactor. TfSOD showed thermostability at 65, 70 and 80°C. The amount of enzyme required to inhibit 50% of pyrogallol autoxidation was 0·41, 0·56 and 13·73 mg at 65, 70 and 80°C, respectively. According to the circular dichroism (CD) spectra data, the secondary structure was progressively lost after increasing the temperature above 70°C. The 3-dimensional model of TfSOD with the predicted cofactor binding corroborated with functional and CD analysis. © 2013 The Society for Applied Microbiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermophilic fungus Thermoascus aurantiacus (CBMAI 756) on solid-state fermentation using corncob as a nutrient source produces an enzyme pool with the potential to be used in bread making. In this paper, the use of this enzyme cocktail as a wheat bread improver was reported. Both products released by flour arabinoxylan degradation and bread quality were investigated. The main product released through enzyme activity after prolonged incubation was xylose indicating the presence of xylanase; however, a small amount of xylobiose and arabinose also confirmed the presence of xylosidase and α-L- arabinofuranosidase, respectively. Enzyme mixture in vitro mainly attacked water-unextractable arabinoxylan contributing to beneficial effect in bread making. The use of an optimal enzyme concentration (35 U xylanase/100 g of flour) increased specific volume (22%), reduced crumb firmness (25%), and reduced amylopectin retrogradation (17%) during bread storage. In conclusion, the enzyme cocktail produced by T. aurantiacus CBMAI 756 can improve wheat bread quality. © 2013 Elsevier Ltd.