63 resultados para symmetric matrices
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A variational analysis of the spiked harmonic oscillator Hamiltonian operator - d2/dx2 + x2 + l(l + 1)/x2 + λ|x| -α, where α is a real positive parameter, is reported in this work. The formalism makes use of the functional space spanned by the solutions of the Schrödinger equation for the linear harmonic oscillator Hamiltonian supplemented by a Dirichlet boundary condition, and a standard procedure for diagonalizing symmetric matrices. The eigenvalues obtained by increasing the dimension of the basis set provide accurate approximations for the ground state energy of the model system, valid for positive and relatively large values of the coupling parameter λ. Additionally, a large coupling perturbative expansion is carried out and the contributions up to fourth-order to the ground state energy are explicitly evaluated. Numerical results are compared for the special case α = 5/2. © 1989 American Institute of Physics.
Resumo:
Curaua fibers were treated with ionized air to improve the fiber/phenolic matrix adhesion.The treatment with ionized air did not change the thermal stability of the fibers. The impact strength increased with increase in the fiber treatment time. SEM micrographs of the fibers showed that the ionized air treatment led to separation of the fiber bundles. Treatment for 12 h also caused a partial degradation of the fibers, which prompted the matrix to transfer the load to a poorer reinforcing agent during impact, thereby decreasing the impact strength of the related composite. The composites reinforced with fibers treated with ionized air absorbed less water than those reinforced with untreated fibers.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We present a new procedure to construct the one-dimensional non-Hermitian imaginary potential with a real energy spectrum in the context of the position-dependent effective mass Dirac equation with the vector-coupling scheme in 1 + 1 dimensions. In the first example, we consider a case for which the mass distribution combines linear and inversely linear forms, the Dirac problem with a PT-symmetric potential is mapped into the exactly solvable Schrodinger-like equation problem with the isotonic oscillator by using the local scaling of the wavefunction. In the second example, we take a mass distribution with smooth step shape, the Dirac problem with a non-PT-symmetric imaginary potential is mapped into the exactly solvable Schrodinger-like equation problem with the Rosen-Morse potential. The real relativistic energy levels and corresponding wavefunctions for the bound states are obtained in terms of the supersymmetric quantum mechanics approach and the function analysis method.
Resumo:
Some kinks for non-Hermitian quantum field theories in 1+1 dimensions are constructed. A class of models where the soliton energies are stable and real are found. Although these kinks are not Hermitian, they are symmetric under PT transformations.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We present a new method to construct the exactly solvable PT-symmetric potentials within the framework of the position-dependent effective mass Dirac equation with the vector potential coupling scheme in 1 + 1 dimensions. In order to illustrate the procedure, we produce three PT-symmetric potentials as examples, which are PT-symmetric harmonic oscillator-like potential, PT-symmetric potential with the form of a linear potential plus an inversely linear potential, and PT-symmetric kink-like potential, respectively. The real relativistic energy levels and corresponding spinor components for the bound states are obtained by using the basic concepts of the supersymmetric quantum mechanics formalism and function analysis method. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Single real transformation matrices are tested as phase-mode transformation matrices of typical symmetrical systems with double three-phase and two parallel double three-phase transmission lines. These single real transformation matrices are achieved from eigenvector matrices of the mentioned systems and they are based on Clarke's matrix. Using linear combinations of the Clarke's matrix elements, the techniques applied to the single three-phase lines are extended to systems with 6 or 12 phase conductors. For transposed double three-phase lines, phase Z and Y matrices are changed into diagonal matrices in mode domain. Considering non-transposed cases of double three-phase lines, the results are not exact and the error analyses are performed using the exact eigenvalues. In case of two parallel double three-phase lines, the exact single real transformation matrix has not been obtained yet. Searching for this exact matrix, the analyses are based on a single homopolar reference. For all analyses in this paper, the homopolar mode is used as the only homopolar reference for all phase conductors of the studied system. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The tissue response to polyanionic collagen matrices, prepared from bovine pericardium and implanted subperiosteally in rat calvaria, was studied. The materials were implanted in 72 male rats (Rattus norvegicus, albinus, Holtzman), randomly divided into four groups: GI-MBP hydrolyzed for 24 h; GII-MBP hydrolyzed for 36 h; GIII-MBP hydrolyzed for 48 h; GIV-native M BP. The materials were explanted after 15, 30 and 60 days and analyzed by routine histological procedures. Except for group IV (native bovine pericardium), polyanionic collagen from groups GI, GII and GIII showed low inflammatory reaction associated with bone formation, partially or completely integrated to the cranial bone; group GIV was characterized by an intense inflammatory reaction with occasional dystrophic mineralization and with occasional bone formation at 60 days when there was a decrease in the inflammatory reaction. Thus, the MBP from groups I, II and III were biologically compatible, enhancing bone formation with a slight delay at 60 days in GII. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
A MATHEMATICA notebook to compute the elements of the matrices which arise in the solution of the Helmholtz equation by the finite element method (nodal approximation) for tetrahedral elements of any approximation order is presented. The results of the notebook enable a fast computational implementation of finite element codes for high order simplex 3D elements reducing the overheads due to implementation and test of the complex mathematical expressions obtained from the analytical integrations. These matrices can be used in a large number of applications related to physical phenomena described by the Poisson, Laplace and Schrodinger equations with anisotropic physical properties.
Resumo:
The consequences of adding random perturbations (anarchy) to a baseline hierarchical model of quark masses and mixings are explored. Even small perturbations of the order of 5% of the smallest non-zero element can already give deviations significantly affecting parameters of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, so any process generating the anarchy should in general be limited to this order of magnitude. The regularities of quark masses and mixings thus appear to be far from a generic feature of randomness in the mass matrices, and more likely indicate an underlying order. (C) 2001 Published by Elsevier B.V. B.V.