36 resultados para sulfur hexafluoride


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mixtures of C6H6 and SF6 were polymerized in an r.f. discharge. Actinometry (quantitative optical emission spectroscopy) was used to determine trends in the plasma concentrations of the species F, H and CH as a function of the proportion of SF6 in the feed. Infrared spectroscopy and electron spectroscopy for chemical analysis were employed to characterize the deposited material. Increasing proportions of SF6 in the feed produced increased fragmentation of the benzene molecules and greater fluorination of the deposited material. The deposition rate, as determined by optical interferometry, was found to be enhanced about 4 times by the presence of 10-20% SF6 in the feed. At 50% SF6 in the feed, deposition rates were greater than in pure C6H6 plasmas despite the (probably large) etching effect of atomic fluorine from the discharge. Relationships between the plasma composition, electron density and temperature, film composition and growth rate are discussed. © 1992.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is presented a study conducted on the physical and electrochemical properties of fluorinated a-C:H films deposited onto a commercial aluminum alloy (AA 5052). The coatings were deposited from mixtures of 91% of acetylene and 9% of argon by plasma immersion ion implantation and deposition technique, PIIID. Total gas pressure was 44 Pa and deposition time (t(dep)) was varied from 300 to 1200 s. The depositing plasmas were generated by the application of radiofrequency power (13.56 MHz, 100W) to the upper electrode and high voltage negative pulses (2400 V. 300 Hz) to the sample holder. Fluorine was incorporated in a post-deposition plasma treatment (13.56 MHz, 70W, 13 Pa) generated from sulfur hexafluoride atmosphere. Chemical structure and composition of the films were investigated using infrared reflectance/absorbance spectroscopy and X-ray photoelectron spectroscopy. The corrosion resistance of the layers was determined by electrochemical impedance spectroscopy (EIS) in a 3.5% NaCl solution, at room temperature. Films presented good adhesion to the substrates and are classified as hydrogenated amorphous carbon (a-C:H) with oxygen traces. Fluorine was detected in all the samples after the post-deposition treatment being its proportion independent on the deposition time. Film thickness presented different tendencies with t(dep), revealing the variation of the deposition rate as a function of the deposition time. Such fluorinated a-C:H films improved the corrosion resistance of the aluminum surface. In a general way the corrosion resistance was higher for films prepared with lower deposition times. The variation of sample temperature with t(dep) was found to be decisive for the concentration of defects in the films and, consequently, for the performance of the samples in electrochemical tests. Results are interpreted in terms of the energy delivered to the growing layer by ionic bombardment. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work was to quantify methane (CH4) emission using the sulfur hexafluoride (SF6) tracer technique, by dairy cattle on pasture in Brazilian tropical field conditions. Measurements were performed in the rainy season, with Holstein and Holstein x Zebu crossbred, from lactating and dry cows and heifers grazing fertilized Tobiatã grass, and heifers grazing unfertilized Brachiaria grass. Methane and SF6 concentrations were determined by gas chromatograph. Methane emissions by lactating cows varied from 13.8 to 16.8 g/hour, by dry cows from 11.6 to 12.3 g/hour, by heifers grazing fertilized grass was 9.5 g/hour and by heifers grazing unfertilized grass varied from 7.6 to 8.3 g/hour or 66 to 72 kg/head/year. Methane emission per digestive dry matter intake (DMDI) varied from 42 to 69 g/kg DMDI for lactating cows, 46 to 56 g/kg for dry cows, 45 to 58 g/kg for heifers grazing fertilized grass and 58 to 62 g/kg for heifers in unfertilized grass pasture. The CH4 emission measured on dairy cattle feeding tropical grasses was higher than that observed for temperate climate conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plasma processing of the surfaces of biomaterials is interesting because it enables modification of the characteristics of a surface without affecting bulk properties. In addition, the results are strongly influenced by the conditions of the treatment. Therefore, by adjusting the plasma parameters it is possible to tailor the surface properties to best fulfill the requirements of a given application. In this work, polyurethane substrates have been subjected to sulfur hexafluoride glow discharge plasmas. The influences of different SF 6 plasma exposure times and pressures on the adhesion of Staphylococcus aureus and Pseudomonas aeruginosa to the polymer have been investigated. The wettability and surface free energy have been evaluated via contact angle measurements. At low pressure (6.7 Pa) the contact angle decreases with increasing exposure time in the 180 s to 540 s interval, but at higher pressure (13.3 Pa) it increases as a function of the same variable. Bacterial adhesion has been quantified from in vitro experiments by determining the growth of colonies on Petri dishes treated with agar nutrient. It has been observed that the surface properties play an important role in microbe adhesion. For instance, the density of adhered P. aeruginosa decreased as the surface contact angle increased. S. aureus preferred to adhere to hydrophobic surfaces. © 2011 by Begell House, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

a-C:H films were grown by plasma-enhanced chemical vapor deposition in atmospheres composed by 30 % of acetylene and 70 % of argon. Radiofrequency signal (RF) was supplied to the sample holder to generate the depositing plasmas. Deposition time and pressure were chosen 300 s and 9.5 Pa, respectively, while the excitation power changed from 5 to 125 W. The films were exposed to a post-deposition treatment during 300 s in RF-plasmas (13.56 MHz, 70 W) excited from 13.33 Pa of SF6. Raman and X-ray photoelectron spectroscopy were used to evaluate the microstructure and chemical composition of the films. The thickness was measured by perfilometry. Hardness and friction coefficient were determined from nanoindentation and risk tests, respectively. With increasing power, the film thickness reduced, but a further shrinkage occurred upon the fluorination process. After that, the molecular structure was observed to vary with deposition power. Fluorine was detected in all samples replacing H atoms. Consistently with the elevation in the proportion of C atoms with sp3 hybridization, hardness increased from 2 to 18 GPa. Friction coefficient also increased with power due to the generation of dangling bonds during the fluorination process. © 2012 Springer Science+Business Media, LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Zootecnia - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of lactic acid, SO2, temperature, and their interactions were assessed on the dynamic steeping of a Brazilian dent corn (hybrid XL 606) to determine the ideal relationship among these variables to improve the wet-milling process for starch and corn by-products production. A 2x2x3 factorial experimental design was used with SO2 levels of 0.05 and 0.1% (w/v), lactic acid levels of 0 and 0.5% (v/v), and temperatures of 52, 60, and 68degreesC. Starch yield was used as deciding factor to choose the best treatment. Lactic acid added in the steep solution improved the starch yield by an average of 5.6 percentage points. SO2 was more available to break down the structural protein network at 0.1% than at the 0.05% level. Starch-gluten separation was difficult at 68degreesC. The lactic acid and SO2 concentrations and steeping temperatures for better starch recovery were 0.5, 0.1, and 52degreesC, respectively. The Intermittent Milling and Dynamic Steeping (IMDS) process produced, on average, 1.4% more starch than the conventional 36- hr steeping process. Protein in starch, oil content in germ, and germ damage were used as quality factors. Total steep time can be reduced from 36 hr for conventional wet-milling to 8 hr for the IMDS process.