37 resultados para strong coupling
Resumo:
Cooper pairing in two dimensions is analyzed with a set of renormalized equations to determine its binding energy for any fermion number density and all coupling assuming a,generic pairwise residual interfermion interaction. Also considered are Cooper pairs (CP's) with nonzero center-of-mass momentum (CMM) and their binding energy is expanded analytically in powers of the CMM up to quadratic terms. A Fermi-sea-dependent linear term in the CMM dominates the pair excitation energy in weak coupling (also called the BCS regime) while the more familiar quadratic term prevails in strong coupling (the Bose regime). The crossover, though strictly unrelated to BCS theory per se, is studied numerically as it is expected to play a central role in a model of superconductivity as a Bose-Einstein condensation of CPs where the transition temperature vanishes for all dimensionality d less than or equal to 2 for quadratic dispersion, but is nonzero for all d greater than or equal to 1 for linear dispersion.
Resumo:
The aim of this work is to implement the mechanism of link rearrangement predicted in the strong coupling limit of Hamiltonian lattice QCD - in a constituent quark model in which constituent quarks, links and junctions are the dominant degrees of freedom. The implications of link rearrangement for the meson-meson interaction are investigated.
Resumo:
We study the behavior of the renormalized sextic coupling at the intermediate and strong coupling regime for the phi(4) theory defined in d = 2 dimensions. We found a good agreement with the results obtained by the field-theoretical renormalization-group in the Ising limit. In this work we use the lattice regularization method.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The Cornwall-Norton model is studied in the strong-coupling regime. It is shown that the fermionic self-energy at large momenta behaves as SIGMA(p) approximately (m2/p)ln(p/m). We verify that in the strong-coupling phase the dynamically generated masses of gauge and scalar bosons are of the same order, and the essential features of the model remain intact.
Resumo:
We present a measurement of the average value of a new observable at hadron colliders that is sensitive to QCD dynamics and to the strong coupling constant, while being only weakly sensitive to parton distribution functions. The observable measures the angular correlations of jets and is defined as the number of neighboring jets above a given transverse momentum threshold which accompany a given jet within a given distance δR in the plane of rapidity and azimuthal angle. The ensemble average over all jets in an inclusive jet sample is measured and the results are presented as a function of transverse momentum of the inclusive jets, in different regions of δR and for different transverse momentum requirements for the neighboring jets. The measurement is based on a data set corresponding to an integrated luminosity of 0.7 fb -1 collected with the D0 detector at the Fermilab Tevatron Collider in pp- collisions at s=1.96 TeV. The results are well described by a perturbative QCD calculation in next-to-leading order in the strong coupling constant, corrected for non-perturbative effects. From these results, we extract the strong coupling and test the QCD predictions for its running over a range of momentum transfers of 50-400 GeV. © 2012 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Bose-Einstein condensation (BEC) in two dimensions (2D) (e.g., to describe the quasi-2D cuprates) is suggested as the possible mechanism widely believed to underlie superconductivity in general. A crucial role is played by nonzero center-of-mass momentum Cooper pairs (CPs) usually neglected in BCS theory. Also vital is the unique linear dispersion relation appropriate to weakly-coupled bosonic CPs moving in the Fermi sea-rather than in vacuum where the dispersion would be quadratic but only for very strong coupling, and for which BEC is known to be impossible in 2D.
Resumo:
We study solitons in the condensate trapped in a double-well potential with far-separated wells, when the s-wave scattering length has different signs in the two parts of the condensate. By employing the coupled-mode approximation it is shown that there are unusual stable bright solitons in the condensate, with the larger share of atoms being gathered in the repulsive part. Such unusual solitons derive their stability from the quantum tunneling and correspond to the strong coupling between the parts of the condensate. The ground state of the system, however, corresponds to weak coupling between the condensate parts, with the larger share of atoms being gathered in the attractive part of the condensate.
Resumo:
Correlations in the azimuthal angle between the two largest transverse momentum jets have been measured using the D0 detector in p (p) over bar collisions at a center-of-mass energy root s=1.96 TeV. The analysis is based on an inclusive dijet event sample in the central rapidity region corresponding to an integrated luminosity of 150 pb(-1). Azimuthal correlations are stronger at larger transverse momenta. These are well described in perturbative QCD at next-to-leading order in the strong coupling constant, except at large azimuthal differences where contributions with low transverse momentum are significant.