164 resultados para soil attributes
Resumo:
Herbicidas aplicados ao solo são submetidos à adsorção, lixiviação e degradação por processos físicos, químicos e biológicos, além da absorção pelas plantas. Todos esses processos são afetados pela classe dos solos onde foram aplicados e das condições climáticas reinantes logo após a aplicação, que afetarão a eficiência dos produtos no controle de plantas daninhas. Investigaram-se as influências dos atributos de solos e condições de cultivo na eficiência do herbicida sulfentrazone no controle da planta daninha tiririca (Cyperus rotundus L.). O Latossolo Vermelho-Amarelo Distrófico (LVAd), o Latossolo Vermelho (LVd - Distrófico; LVdf - Distroférrico; LVef - Eutroférrico) e o Nitossolo Vermelho Eutrófico (NVe) foram coletados sob duas condições de cultivo, visando obter solos com teores diferenciados de argila, óxido de ferro e matéria orgânica. As amostras dos solos foram submetidas à caracterização granulométrica, química e mineralógica e, em seguida, utilizadas no bioensaio de avaliação da eficiência do sulfentrazone (1,6 L p.c. ha-1) no controle da tiririca em condições de pré-emergência. O sulfentrazone apresentou comportamento diferenciado entre as classes de solos estudados e a sua eficiência diminuiu com o aumento do teor de óxido de ferro nos solos, na seguinte ordem: LVAd, LVd, NVe, LVef e LVdf, sendo que as variações nos teores de argila (240 a 640 g kg-1) e da matéria orgânica (12 a 78 g kg-1) dos solos não interferiram na eficiência do sulfentrazone.
Resumo:
A caracterização da variabilidade espacial dos atributos do solo é indispensável para subsidiar práticas agrícolas de maneira sustentável. A utilização da geoestatística para caracterizar a variabilidade espacial desses atributos, como a resistência mecânica do solo à penetração (RP) e a umidade gravimétrica do solo (UG), é, hoje, prática usual na agricultura de precisão. O resultado da análise geoestatística é dependente da densidade amostral e de outros fatores, como o método de georreferencimento utilizado. Desta forma, o presente trabalho teve como objetivo comparar dois métodos de georreferenciamento para a caracterização da variabilidade espacial da RP e da UG, bem como a correlação espacial dessas variáveis. Foi implantada uma malha amostral de 60 pontos, espaçados em 20 m. Para as medições da RP, utilizou-se de penetrógrafo eletrônico e, para a determinação da UG, utilizou-se de trado holandês (profundidade de 0,0-0,1 m). As amostras foram georreferenciadas, utilizando-se do método de Posicionamento por Ponto Simples (PPS), com de (retirar) receptor GPS de navegação, e Posicionamento Relativo Semicinemático, com receptor GPS geodésico L1. Os resultados indicaram que o georreferenciamento realizado pelo PPS não interferiu na caracterização da variabilidade espacial da RP e da UG, assim como na estrutura espacial da relação dos atributos.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O conceito de superfície geomórfica permite uma interligação entre os diferentes ramos da ciência do solo, tais como geologia, geomorfologia e pedologia. Esta associação favorece a compreensão da distribuição espacial dos solos na paisagem, e torna possível compreender o comportamento dos atributos do solo, que estão principalmente relacionadas com a estratigrafia e formas do relevo. Assim, este estudo visa à aplicação da estatística multivariada para categorizar superfícies geomórficas em uma litossequência arenito-basalto, de modo a fornecer uma base para a avaliação do solo em áreas afins. A área de estudo está localizada no município de Pereira Barreto, São Paulo, Brasil. A área escolhida possui 530 hectares, onde foram localizadas e mapeadas três superfícies geomórficas (I, II e III). Na área, 134 amostras foram coletadas nas profundidades de 0,0-0,2 m e 0,8-1,0 m, foram determinados os conteúdos de areia, silte e argila, pH em CaCl2, conteúdo de MO, P, Ca, Mg, K, Al e H+Al. Com base nos resultados, foram realizadas a análise univariada e multivariada de variância, clusters e principal componente, a fim de comparar as três superfícies geomórficas. A análise estatística univariada dos atributos do solo não foi eficiente na identificação das três superfícies geomórficas. Utilizando-se os atributos físicos e químicos do solo, as técnicas estatísticas multivariada permitiram à separação dos três grupos de corpos naturais do solo que foram equivalentes as três superfícies geomórficas mapeadas. Estes resultados são interessantes, pois demonstram a viabilidade da utilização de classificação numérica das superfícies geomórficas para ajudar no mapeamento de solo.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study aimed to investigate the potential use of magnetic susceptibility (MS) as pedotransfer function to predict soil attributes under two sugarcane harvesting management systems. For each area of 1 ha (one with green sugarcane mechanized harvesting and other one with burnt sugarcane manual harvesting), 126 soil samples were collected and subjected to laboratory analysis to determine soil physical, chemical and mineralogical attributes and for measuring of MS. Data were submitted to descriptive statistics by calculating the mean and coefficient of variation. In order to compare the means in the different harvesting management systems it was carried out the Tukey test at a significance level of 5%. In order to investigate the correlation of the MS with other soil properties it was made the correlation test and aiming to assess how the MS contributes to the prediction of soil complex attributes it was made the multiple linear regressions. The results demonstrate that MS showed, in both sugarcane harvesting management systems, statistical correlation with chemical, physical and mineralogical soil attributes and it also showed potential to be used as pedotransfer function to predict attributes of the studied oxisol.
Resumo:
Soil CO2 emission (F-CO2) is influenced by chemical, physical and biological factors that affect the production of CO2 in the soil and its transport to the atmosphere. F-CO2 varies in time and space depending on environmental conditions, including the management of the agricultural area. The aim of this study was to investigate the spatial variability structure of F-CO2 and soil attributes in a mechanically harvested sugarcane area (green harvest) using fractal dimension (D-F) derived from isotropic variograms at different scales (fractograms). F-CO2 showed an overall average of 1.51 mu mol CO2 m(-2) s(-1) and correlated significantly (P < 0.05) with soil physical attributes, such as soil bulk density, air-filled pore space, macroporosity and microporosity. Topologically significant DF values were obtained from the characterization of F-CO2 at medium and large scales (above 20 m), with values of 2.92 and 2.90, respectively. The variations in D-F with scales indicate that the spatial variability structure of F-CO2 was similar to that observed for soil temperature and total pore volume and was the inverse of that observed for other soil attributes, such as soil moisture, soil bulk density, microporosity, air-filled pore space, silt and clay content, pH, available phosphorus and the sum of bases. Thus, the spatial variability structure of F-CO2 presented a significant relationship with the spatial variability structure for most soil attributes, indicating the possibility of using fractograms as a tool to better describe the spatial dependence of variables along the scale. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Re-establishing deforested ecosystems to pre-settlement vegetation is difficult, especially in ecotonal areas, due to lack of knowledge about the original physiognomy. Our objective was to use a soils database that included chemical and physical parameters to distinguish soil samples of forest from those of savannah sites in a municipality located in the southeastern Brazil region. Discriminant analysis (DA) was used to determine the original biome vegetation (forest or savannah) in ecotone regions that have been converted to pasture and are degraded. First, soils of pristine forest and savannah sites were tested, resulting in a reference database to compare to the degraded soils. Although the data presented, in general had a high level of similarity among the two biomes, some differences occurred that were sufficient for DA to distinguish the sites and classify the soil samples taken from grassy areas into forest or savannah. The soils from pastured areas presented quality worse than the soils of the pristine areas. Through DA analysis we observed that, from seven soil samples collected from grassy areas, five were most likely originally forest biome and two were savannah, ratified by a complementary cluster analysis carried out with the database of these samples. The model here proposed is pioneer. However, the users should keep in mind that using this technology, i.e., establishing a regional-level database of soil features, using soil samples collected both from pristine and degraded areas is critical for success of the project, especially because of the ecological and regional particularities of each biome.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Spatial sampling designs used to characterize the spatial variability of soil attributes are crucial for science studies. Sample planning for the interpolation of a regionalized variable may use several criteria, which could be best selected from an estimated semivariogram from a previously established grid. The objective of this study was to optimize the procedure for scaled semivariogram use to plan soil sampling in sugarcane fields in the Alfisol and Oxisol regions of Jaboticabal Town in So Paulo State, Brazil. A scaled semivariogram for several soil chemical attributes was estimated from the data obtained from two grids positioned on a sugarcane field area, sampled at a depth of 0.0-0.5 m. The research showed that regular grids with uniform intervals did not express the real spatial variability of the soil attributes of Oxisols and Alfisols in the study area. The calculated final sampling density based on the scaled parameters of the semivariogram was one sample for each 2 ha in Area 1 (convex landscape) and one sample for each 1 ha in Area 2 (linear landscape), as indicated by SANOS 0.1 software. The combined use of the simulation programs and scaled semivariograms can be used to define sampling points. These results may help in soil fertility mapping and thereby improve nutrient management in sugarcane crops.