29 resultados para sisal
Resumo:
This paper discusses the results of biodegradability tests of natural fibers used by the automotive industry, namely: coir, coir with latex, and sisal. The biodegradation of coir, coir with latex, and of sisal fibers was determined by monitoring the production of carbon dioxide (CO(2)) (IBAMA-E.1.1.2, 1988) and fungal growth (DIN 53739, 1984). The contents of total extractives, lignin, holocellulose, ashes, carbon, nitrogen and hydrogen of the fibers under study were determined in order to ascertain their actual content and to understand the results of the biodegradation tests. The production of CO(2) indicated low biodegradation, i.e., about 10% in mass, for all the materials after 45 days of testing; in other words, no material inhibited glucose degradation. However, the percentage of sisal fiber degradation was fourfold higher than that of coir with latex in the same period of aging. The fungal growth test showed a higher growth rate on sisal fibers, followed by coir without latex. In the case of coir with latex, we believe the fungal growth was not intense, because natural latex produces a bactericide or fungicide for its preservation during bleeding [1]. An evaluation of the materials after 90 days of aging tests revealed breaking of the fibers, particularly sisal and coir without latex, indicating fungal attack and biodegradation processes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The effect of UV-C irradiation of the TPS and PCL biocomposites with sisal bleached fibers was investigated. The biocomposite was UV-C irradiated at room temperature under air atmosphere. The structural and morphological changes produced when the films were exposed to UV irradiation for 142 h, were monitored using Scanning Electron Microscopy (SEM), Mechanical Tensile Tests, Differential Scanning Calorimetry (DSC), X-ray diffraction, Thermogravimetric analysis (TGA), and Fourier transform infra-red analysis (FTIR). Addition of 5-10% fibers in composites exhibited improved mechanical and thermal properties attributed to more efficient dispersibility of fiber in the matrix and good compatibility between fibers and the matrix polymer, however, after irradiated, the tensile properties decreased due to chain scission. The samples of irradiated PCL and IFS showed crystallinity increase, whereas the blend and composites showed a decrease in crystallinity. The DSC and X-ray diffraction studies suggested interaction between polymers in the blend via carboxyl groups in thermoplastic starch-PCL and hydroxyl groups in fibers. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Polypropylene powder and sisal fibers were oxygen plasma treated, and the mechanical properties of their composites were tested. Two main effects were investigated: the incorporation of oxygen polar groups in the polypropylene surface and the surface degradation and chain scission of both polypropylene and sisal fibers. Prior to these treatments, three reactor configurations were tested to investigate the best condition for both effects to occur in PP film. Results showed that polypropylene-cellulose adhesion forces are about an order of magnitude higher for PP film treatments at 13.56 MHz than at 40 kHz owing to much higher chain scission at lower frequencies, although it probably also occurs at high frequency and high power. Polypropylene powder treated with oxygen plasma in optimum conditions for polar group incorporation did not result in improvement in any composite mechanical property, probably owing to the polymer melting. Sisal fibers and PP powder treated In conditions of surface degradation did not improve flexural or tensile properties but resulted in higher impact resistance, comparable to the improvement obtained with the addition of compatibilizer.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this work polystyrene composites reinforced with recycled sisal fibers were processed, in order to apply in the manufacture of printed circuit boards. A thermoplastic matrix of recycled polystyrene was used, this material came from waste expanded polystyrene (EPS) used in appliance's packages. Composites were prepared with 15% and 25% of sisal fibers. To obtain the composites, wasted EPS and natural sisal fibers were chosen, to encourage recycling and reuse of household waste and also the use of renewable resources. The composites were analyzed by standard tensile and flexural test, in order to verify the mechanical properties of the material. The characterization of the composite was done by scanning electron microscopy (SEM) , thermogravimetry (TGA / DTG) , differential scanning calorimetry (DSC) and dielectric analysis . The analysis of the results showed that the percentage of fibers in the composite influences directly the thermal and mechanical properties. Plates with a lower percentage of fibers showed superior properties at a higher percentage. The composite material obtained is easy to process and it's use is feasible for the confection of printed circuit boards, considering it's mechanical, thermal and insulative properties