113 resultados para silver nanoparticle
Resumo:
Introduction: Currently, new methods to reduce biofilm formation on biomaterials are very studied, for example the use of silver nanoparticles, which were bactericidal. However, there are few studies investigating the benefits of these particles in dental restorative materials. Objective: This study aimed to compare in vitro the Streptococcus mutans biofilm formation on conventional light-cured composite resin with that on experimental light-cured composite resin, modified with silver nanoparticles. Material and methods: Discs were produced with either conventional resin (control group) and resin modified with different concentrations of silver nanoparticles, 0.1%, 0.3% and 0.6 % wt. (groups 1, 2 and 3, respectively). The samples were incubated in bacterial suspension (S. mutans) enriched with 20% sucrose to promote biofilm growth on the surfaces. Incubation times were 1, 4 and 7 days. After each period, adherent biofilms were disaggregated by ultrasound. Then, the numbers of viable cells recovered from the biofilms were counted through the serial dilution method. A morphological analysis of biofilm was also performed by Scanning Electron Microscopy. The data were subjected to Anova and Tukey’s test (α = 0.05). Results: The number of viable cells was statistically lower in groups 2 and 3 than in group 1 and control group, after the three incubation periods, without statistical difference between groups 2 and 3. The number of viable cells was statistically lower in group 1 than in control group, after 4 and 7 days of incubation. Conclusion: Resins modified with silver presented reduction of S. mutans biofilm on their surfaces, according to the conditions of this study.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to compare biofi lm formation by Candida glabrata and Candida albicans on acrylic, either individually or when combined (single and dual species) and then examine the antimicrobial effects of silver nanoparticles and nystatin on these biofi lms. Candidal adhesion and biofi lm assays were performed on acrylic surface in the presence of artifi cial saliva (AS) for 2 h and 48 h, respectively. Candida glabrata and C. albicans adherence was determined by the number of colony forming units (CFUs) recovered from the biofi lms on CHROMagar ® Candida . In addition, crystal violet (CV) staining was used as an indicator of biofi lm biomass and to quantify biofi lm formation ability. Pre-formed biofi lms were treated either with silver nanoparticles or nystatin and the effect of these agents on the biofi lms was evaluated after 24 h. Results showed that both species adhered to and formed biofi lms on acrylic surfaces. A signifi cantly ( P < 0.05) higher number of CFUs was evident in C. glabrata biofi lms compared with those formed by C. albicans . Comparing single and dual species biofi lms, equivalent CFU numbers were evident for the individual species. Both silver nanoparticles and nystatin reduced biofi lm biomass and the CFUs of single and dual species biofi lms ( P < 0.05). Silver nanoparticles had a signifi cantly ( P < 0.05) greater effect on reducing C. glabrata biofi lm biomass compared with C. albicans . Similarly, nystatin was more effective in reducing the number of CFUs of dual species biofi lms compared with those of single species ( P < 0.05). In summary, C. glabrata and C. albicans can co-exist in biofi lms without apparent antagonism, and both silver nanoparticles and nystatin exhibit inhibitory effects on biofi lms of these species. © 2013 ISHAM.
Resumo:
Silver nanoparticles have high temperature stability and low volatility, and at the nanoscale are known to be an effective antifungal and antimicrobial agent. The present investigation involves the synthesis of silver nanoparticle/carboxymethylcellulose nanocomposites. The nanoparticles synthesised in this study had sizes in the range of 100 and 40 nm. The nanocomposites formed by a combination of metallic nanoparticles and carboxymethylcellulose were characterised by contact angle measurements, solubility tests, thermal and mechanical analyses, and morphological images. Improvements in the hydrophobic properties were observed with inclusion of the nanoparticles in the nanocomposites, with the best results occurring after the addition of 40 nm nanoparticles in a carboxymethylcellulose matrix. The silver nanoparticles tend to occupy the empty spaces in the pores of the carboxymethylcellulose matrix, inducing the collapse of these pores and thereby improving the tensile and barrier properties of the film. Copyright © 2013 American Scientific Publishers All rights reserved.
Resumo:
Aim: The aim of this study was to assess the effect of different silver nanoparticles (SN) concentrations on the matrix composition and structure of Candida albicans and Candida glabrata biofilms. Methods and Results: Candida biofilms were developed in 6-well microtiter plates during 48 h. After, these biofilms were exposed to 13·5 or 54 μg SN ml-1 for 24 h. Then, extracellular matrices were extracted from biofilms and analysed chemically in terms of proteins, carbohydrates and DNA. To investigate the biofilm structure, scanning electron microscopy (SEM) and epifluorescence microscopy were used. SN interfered with the matrix composition of Candida biofilms tested in terms of protein, carbohydrate and DNA, except for the protein content of C. albicans biofilm. By SEM, Candida biofilms treated with SN revealed structural differences, when compared with the control groups. Further, SN showed a trend of agglomeration within the biofilms. Epifluorescence microscopy images suggest that SN induced damage on cell walls of the Candida isolates tested. Conclusions: In general, irrespective of concentration, SN affected the matrix composition and structure of Candida biofilms and these findings may be related to the mechanisms of biocide action of SN. Significance and Impact of the Study: This study reveals new insights about the behaviour of SN when in contact with Candida biofilms. SN may contribute to the development of therapies to prevent or control Candida infections. © 2012 The Society for Applied Microbiology.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The incidence of fungal infections has increased significantly, so contributing to morbidity and mortality. This is caused by an increase in antimicrobial resistance and the restricted number of antifungal drugs, which retain many side effects. Candida species are major human fungal pathogens that cause both mucosal and deep tissue infections. Recent evidence suggests that the majority of infections produced by this pathogen are associated with biofilm growth. Biofilms are biological communities with a high degree of organization, in which micro-organisms form structured, coordinated and functional communities. These biological communities are embedded in a self-created extracellular matrix. Biofilm production is also associated with a high level of antimicrobial resistance of the associated organisms. The ability of Candida species to form drugresistant biofilms is an important factor in their contribution to human disease. The study of plants as an alternative to other forms of drug discovery has attracted great attention because, according to the World Health Organization, these would be the best sources for obtaining a wide variety of drugs and could benefit a large population. Furthermore, silver nanoparticles, antibodies and photodynamic inactivation have also been used with good results. This article presents a brief review of the literature regarding the epidemiology of Candida species, as well as their pathogenicity and ability to form biofilms, the antifungal activity of natural products and other therapeutic options. © 2013 SGM.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, synthesis, characterization and antimycobacterial properties of a new water-soluble complex identified as silver-mandelate are described. Elemental and thermal analyses are consistent with the formula [Ag(C6H5C(OH)COO)](n). The polymeric structure was determined by single X-ray diffraction and the two-dimensional structure is based on the bis(carboxylate-O,O') dimer [Ag-O, 2.237(3), 2.222(3) angstrom]. The structure is extended along both the b and c axes through two oxygen atoms of a bidentate alpha-hydroxyl-carboxylate residue [Ag-OH(hydroxyl), 2.477(3) angstrom; Ag-O(carboxylate), 2.502(3) angstrom; O-Ag-O, 63.94(9)degrees]. A strong d(10)-d(10) interaction was observed between two silver atoms. The Ag...Ag distance is 2.8307(15) angstrom. The NMR C-13 spectrum in D2O shows that coordination of the ligand to Ag(l) occurs through the carboxylate group in solution. Potentiometric titration shows that only species with a molar metaHigand ratio of 2:2 are formed in aqueous solution. The mandelate complex and the silver-glycolate, silver-malate and silver-hydrogen-tartarate complexes were tested against three types of mycobacteria, Mycobacterium avium, Mycobacterium tuberculosis and Mycobacterium kansasii, and their minimal inhibitory concentration (MIC) values were determined. The results show that the four complexes are potential candidates for antiseptic or disinfectant drugs for discharged secretions of patients affected with tuberculosis. (c) 2006 Published by Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)