50 resultados para radio frequency sputtering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article reports on a series of experiments with polyethylene terepthalate (PET) treated in a radio frequency plasma reactor using argon and oxygen as a gas fuel, for treatment times equal to 5 s, 20 s, 30 s, and 100 s. The mechanical strength modification of PET fibers, evaluated by tensile tests on monofilaments, showed that oxygen and argon plasma treatment resulted in a decrease in the average tensile strength compared with the untreated fibers. This reduction in tensile strength is more significant for argon plasma and is very sensitive to the treatment time for oxygen plasma. Scanning electron microscopy (SEM) used to analyze the effects of cold plasma treatment on fiber surfaces indicates differences in roughness profiles depending on the type of treatments, which were associated with variations in mechanical strength. Differences in the roughness profile, surveyed through an image analysis method, provided the distance of roughness interval, D-ri. This parameter represents the number of peaks contained in a unit length and was introduced to correlate fiber surface condition, before and after cold plasma treatments, and average tensile strength. Statistical analysis of experimental data, using Weibull cumulative distribution and linear representation, was performed to explain influences of treatment time and environmental effects on mechanical properties. The shape parameter, alpha, and density parameter, beta, from the Weibull distribution function were used to indicate the experimental data range and to confirm the mechanical performance obtained experimentally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silica-titania planar waveguides of different thicknesses and compositions have been produced by radio-frequency sputtering and dip coating on silica substrates. Waveguides were also produced by silver exchange on a soda-lime silicate glass substrate. Brillouin scattering of the samples has been studied by coupling the exciting laser beam with a prism to different transverse-electric (TE) modes of the waveguides, and collecting the scattered light from the front surface. In multimode waveguides, the spectra depend on the m mode of excitation. For waveguides with a step index profile, two main peaks due to longitudinal phonons are present, apart from the case of the TE0 excitation, where a single peak is observed. The energy separation between the two peaks increases with the mode index. In graded-index waveguides, m-1 peaks of comparable intensities are observed. The spectra are reproduced very well by a model which considers the space distribution of the exciting field in the mode, a simple space dependence of the elasto-optic coefficients, through the value of the refraction index, and neglects the refraction of phonons. A single-fit parameter, i.e., the longitudinal sound velocity, is used to calculate as many spectra as is the number of modes in the waveguide. (C) 2003 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen-deficient TiO2 films with enhanced visible and near-infrared optical absorption have been deposited by reactive sputtering using a planar diode radio frequency magnetron configuration. It is observed that the increase in the absorption coefficient is more effective when the O-2 gas supply is periodically interrupted rather than by a decrease of the partial O-2 gas pressure in the deposition plasma. The optical absorption coefficient at 1.5 eV increases from about 1 x 10(2) cm(-1) to more than 4 x 10(3) cm(-1) as a result of the gas flow discontinuity. A red-shift of similar to 0.24 eV in the optical absorption edge is also observed. High resolution transmission electron microscopy with composition analysis shows that the films present a dense columnar morphology, with estimated mean column width of 40nm. Moreover, the interruptions of the O-2 gas flow do not produce detectable variations in the film composition along its growing direction. X-ray diffraction and micro-Raman experiments indicate the presence of the TiO2 anatase, rutile, and brookite phases. The anatase phase is dominant, with a slight increment of the rutile and brookite phases in films deposited under discontinued O-2 gas flow. The increase of optical absorption in the visible and near-infrared regions has been attributed to a high density of defects in the TiO2 films, which is consistent with density functional theory calculations that place oxygen-related vacancy states in the upper third of the optical bandgap. The electronic structure calculation results, along with the adopted deposition method and experimental data, have been used to propose a mechanism to explain the formation of the observed oxygen-related defects in TiO2 thin films. The observed increase in sub-bandgap absorption and the modeling of the corresponding changes in the electronic structure are potentially useful concerning the optimization of efficiency of the photocatalytic activity and the magnetic doping of TiO2 films. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4724334]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminum acetylacetonate has been reported as a precursor for the deposition of alumina films using different approaches. In this work, alumina-containing films were prepared by plasma sputtering this compound, spread directly on the powered lowermost electrode of a reactor, while grounding the substrates mounted on the topmost electrode. Radiofrequency power (13.56 MHz) was used to excite the plasma from argon atmosphere at a working pressure of 11 Pa. The effect of the plasma excitation power on the properties of the resulting films was studied. Film thickness and hardness were measured by profilometry and nanoindentation, respectively. The molecular structure and chemical composition of the layers were analyzed by Fourier transform infrared spectroscopy and energy dispersive spectroscopy. Surface micrographs, obtained by scanning electron microscopy, allowed the determination of the sample morphology. Grazing incidence X-ray diffraction was employed to determine the structure of the films. Amorphous organic layers were deposited with thicknesses of up to 7 μm and hardness of around 1.0 GPa. The films were composed by aluminum, carbon, oxygen and hydrogen, their proportions being strongly dependent on the power used to excite the plasma. A uniform surface was obtained for low-power depositions, but particulates and cracks appeared in the high-power prepared materials. The presence of different proportions of aluminum oxide in the coatings is ascribed to the different activations promoted in the metalorganic molecule once in the plasma phase. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc oxide (ZnO) thin films were prepared using reactive radio-frequency magnetron sputtering of a pure metallic zinc target onto glass substrates. The evolution of the surface morphology and the optical properties of the films were studied as a function of the substrate temperature, which was varied from 50 to 250 C. The surface topography of the samples was examined using atomic force microscopy (AFM), and their optical properties were studied via transmittance measurements in the UV-Vis-NIR region. DRX and AFM analyses showed that the surface morphology undergoes a structural transition at substrate temperatures of around 150 C. Actually, at 50 C the formation of small grains was observed while at 250 C the grains observed were larger and had more irregular shapes. The optical gap remained constant at ∼3.3 eV for all films. In the visible region, the average optical transmittance was 80 %. From these results, one can conclude that the morphological properties of the ZnO thin films were more greatly affected by the substrate temperature, due to mis-orientation of polycrystalline grains, than were the optical properties. © 2013 Springer Science+Business Media New York.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bacterial cellulose (BC) membranes produced by gram-negative, acetic acid bacteria (Gluconacetobacter xylinus), were used as flexible substrates for the fabrication of Organic Light Emitting Diodes (OLED). In order to achieve the necessary conductive properties indium tin oxide (ITO) thin films were deposited onto the membrane at room temperature using radio frequency (r.f) magnetron sputtering with an r.f. power of 30 W, at pressure of 8 mPa in Ar atmosphere without any subsequent thermal treatment. Visible light transmittance of about 40% was observed. Resistivity, mobility and carrier concentration of deposited ITO films were 4.90 x 10(-4) Ohm cm, 8.08 cm(2)/V-s and -1.5 x 10(21) cm(-3), respectively, comparable with commercial ITO substrates. In order to demonstrate the feasibility of devices based on BC membranes three OLEDs with different substrates were produced: a reference one with commercial ITO on glass, a second one with a SiO(2) thin film interlayer between the BC membrane and the ITO layer and a third one just with ITO deposited directly on the BC membrane. The observed OLED luminance ratio was: 1; 0.5; 0.25 respectively, with 2400 cd/m(2) as the value for the reference OLED. These preliminary results show clearly that the functionalized biopolymer, biodegradable, biocompatible bacterial cellulose membranes can be successfully used as substrate in flexible organic optoelectronic devices. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Prosthetic composite is a widely used biomaterial that satisfies the criteria for application as an organic implant without adverse reactions. Polyethylene therephthalate (PET) fiber-reinforced composites have been used because of the excellent cell adhesion, biodegradability and biocompatibility. The chemical inertness and low surface energy of PET in general are associated with inadequate bonds for polymer reinforcements. It is recognized that the high strength of composites, which results from the interaction between the constituents, is directly related to the interfacial condition or to the interphase. A radio frequency plasma reactor using oxygen was used to treat PET fibers for 5, 20, 30 and 100 s. The treatment conditions were 13.56 MHz, 50 W, 40 Pa and 3.33 x 10(-7) m(3)/s. A Rame-Hart goniometer was used to measure the contact angle and surface energy variation of fibers treated for different times. The experimental results showed contact angle values from 47degrees to 13degrees and surface energies from 6.4 x 10(-6) to 8.3 x 10(-6) J for the range of 5 to 100 s, respectively. These results were confirmed by the average ultimate tensile strength of the PET fiber/polymethylmethacrylate (PMMA) matrix composite tested in tensile mode and by scanning electron microscopy. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, it was used a plasma system composed of a cylindrical stainless steel reactor, a radio-frequency (13.56MHz) power source fixed at either 25 W or 70 W, a power source with a negative bias of 10kV and a 100Hz pulse. The system worked at an operational pressure of 80mTorr which consisted of varying concentrations of the monomer HMDSN and gaseous nitrogen in ratios: HMDSN (mTorr)/nitrogen (mTorr) from 70/10 to 20/60 in terms of operational pressure. The structural characterization of the films was done by FTIR spectroscopy. Absorptions were observed between 3500 cm(-1) to 3200 cm(-1), 3000 cm(-1) to 2900 cm(-1), 2500 cm(-1) to 2000 cm(-1), 1500 cm(-1) to 700 cm(-1), corresponding, respectively, to OH radicals, C-H stretching bonds in CH2 and CH3 molecules, C-N bonds, and finally, strain C-H bonds, Si-CH3 and Si-N groups, for both the 70 W and the 25 W. The contact angle for water was approximately 100 degrees and the surface energy is near 25mJ/m(2) which represents a hydrophobic surface, measured by goniometric method. The aging of the film was also analyzed by measuring the contact angle over a period of time. The stabilization was observed after 4 weeks. The refractive index of these materials presents values from 1.73 to 1.65 measured by ultraviolet-visible technique.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)