96 resultados para poly(phenylene vinylene) and derivatives
Resumo:
We have obtained the photoconductivity (PC) excitation spectrum for a stretch-oriented poly(paraphenylene vinylene) film over a wide spectral range (up to 5 eV). The measurements were performed in the surface cell configuration with the electric field parallel or perpendicular to the stretch direction. Although the sample had a stretch ratio of similar to 4, the dark conductivity and the steady-state photoconductivity were both about 40 and 20 times higher with the electric field parallel to the average chain direction, respectively. However, the shape of the PC excitation spectrum was independent of field direction and did not show a significant rise in the ultraviolet, as is usually observed for measurements in the photodiode configuration. The implications of these results to the charge photogeneration mechanism in conjugated polymers are discussed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The properties of Langmuir and Langmuir-Blodgett (LB) films from a block copolymer with polyethylene oxide and phenylene-vinylene moieties are reported. The LB films were successfully transferred onto several types of substrates, with sufficient quality to allow for evaporation of a metallic electrode on top of the LB films to produce polymer light emitting diodes (PLEDs). The photoluminescence and electroluminescence spectra of the LB film and device were similar, featuring an emission at ca. 475 nm, from which we could infer that the emission mechanisms are essentially the same as in poly(p-phenylene) derivatives. Analogously to other PLEDs the current versus voltage characteristics of the LB-based device could be explained with the Arkhipov model according to which charge transport occurs among localized sites. The implications for nanotechnology of the level of control that may be achieved with LB devices will also be discussed.
Resumo:
The absorption and luminescence spectra for the poly(p-phenylene vinylene)/sol-gel silica with different thermal treatments were measured. A considerable increase in the luminescence was observed for the polymer introduced into SiO2 matrix with thermal treatment at 120 degreesC. The thermal diffusivity of these samples was measured using the thermal lens technique, and the obtained value 3.3 x 10(-5) cm(2)/s (sample treated at 37 degreesC) is practically independent of the thermal treatment (37-150 degreesC). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper, we demonstrate that the intrinsic electric field created by a poly(o-methoxyaniline) (POMA) cushion layer hinders the changes in molecular conformation of poly(p-phenylenevinylene) (PPV) in layer-by-layer with dodecylbenzene sulfonic acid (DBS). This was modeled with density functional theory (DFT) calculations where an energy barrier hampered molecular movements of PPV segments when they were subjected to an electric field comparable to that caused by a charged POMA layer. With restricted changes in molecular conformation, the PPV film exhibited Franck-Condon transitions and the photoexcitation spectra resembled the absorption spectra, in contrast to PPV/DBS films deposited directly on glass, with no POMA cushion. Other effects from the POMA cushion were the reduced number of structural defects, confirmed with Raman spectroscopy, and an enhanced PPV emission at high temperatures (300 K) in comparison with the films on bare glass. The positive effects from the POMA cushion may be exploited for enhanced opto-electronic devices, especially as the intrinsic electric field may assist in separating photoexcited electron-hole pairs in photovoltaic devices. © 2013 American Institute of Physics.
Resumo:
The conditions for processing and doping of blends of poly(o-alkoxyaniline)s and poly(vinylidene fluoride) were investigated. Flexible, free-standing and stretchable films of blends of various compositions were obtained by casting. A low percolation threshold was observed with the onset of conductivity at low polyalkoxyaniline contents (i.e. 5%). Interestingly, these blends displayed electrochromism with colour changes similar to those of the parent conducting polymer, as observed from cyclic voltammetry measurements. This behaviour is seen even for low contents of the conducting polymer, indicating that a continuous conducting pathway, which is capable of exchanging charge, is formed within the insulating matrix.
Resumo:
Poly(p-phenylene vinylene) (PPV) derivatives are well known for their applications in polymer light emitting diodes (PLEDs). These derivatives are highly susceptible to photooxidation though, which is mainly caused by the scission of the vinyl double bond on the polymer backbone. In this work, we show that Langmuir-Blodgett (LB) films are less degraded than cast films of a PPV derivative (OC1OC6-PPV). Both films had similar thickness (∼50 nm) to allow for a more realistic comparison. Photodegradation experiments were carried out by illuminating the films with white light from a halogen lamp (50W, 12 V), placed at a fixed dstance from the sample. The decay was monitored by UV-Vis and FTIR spectroscopies. The results showed that cast films are completely degraded in ca. 300 min, while LB took longer times, ca. 1000 min, i.e. 3 times the values for the cast films. The degradation process occurs in at least two stages, the rates of which were calculated assuming that the reaction follows a first order kinetics. The characteristic times for the first stage were 3.6×10-2 and 1.3×10-3 min-1 for cast and LB films, respectively. For the second stage the characteristic times were 5.6×10-2 and 5.0×10 -3 min-1. The differences can be attributed to the more compact morphology in the LB than in the cast films. With a compact morphology the diffusion of oxygen in the LB film is hampered and this causes a delay in the degradation process.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Poly(p-phenylene vinylene) (PPV) derivatives are well known for their applications in polymer light emitting diodes (PLEDs). PPV derivatives are highly susceptible to photo-oxidation though, which is mainly caused by the scission of the vinyl double bond on the polymer backbone. In this work, we show that Langmuir-Blodgett (LB) films are less degraded than cast films of a PPV derivative (OC1OC6-PPV). Both films had similar thickness (similar to 50 nm) to allow for a more realistic comparison. Degradation was monitored with UV-vis and FTIR spectroscopies. The results indicated that cast films were completely degraded in ca. 400 min, while LB took longer time, i.e. about four times the values for the cast films. The differences can be attributed to the more compact morphology in the LB than in the cast films. With a compact morphology the diffusion of oxygen in the LB film is hampered and this causes a delay in the degradation process. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Thin films of chemically synthesized polyaniline and poly(o-methoxyaniline) were exposed to ionizing X-ray radiation and characterized by radiation induced conductivity measurements, ultraviolet-visible spectroscopy, electron paramagnetic resonance, electrical conductivity and solubility measurements. Samples irradiated in vacuum or dry Oxygen atmosphere did not have their electronic spectra changed. However, under humid atmosphere the energy of the excitonic transition was decreased and accompanied by a great conductivity increase. The results indicate that doping of polyaniline can be induced by X-ray radiation which might be of great interest for applications on lithography and microelectronics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Blend films of poly (o-ethoxyaniline) (POEA) and collagen were fabricated by casting under optimized conditions and characterized by Raman scattering and UV-vis absorption spectroscopies. The UV-vis spectra showed that the addition of collagen in the aqueous solution of POEA promotes a dedoping of the POEA. This effect was also observed for the blend films as supported by Raman scattering and a mechanism for the chemical interaction between POEA-collagen is proposed. The influences of different percentage of collagen as well as the pH of stock solutions during the fabrication process of the blend films were also investigated. It was found that the preparation method plays an important role in the flexibility and freestanding properties of the films. Complementary, the surface morphology was studied by atomic force microscopy and the conductivity by dc measurements. (C) 2003 Elsevier Ltd. All rights reserved.