73 resultados para planar waveguide
Resumo:
The sol-gel method combined with a spin-coating technique has been successfully applied for the preparation of rare-earth doped silica:germania films used for the fabrication of erbium-doped waveguide amplifiers (EDWA), presenting several advantages over other methods for the preparation of thin films. As with other methods, the sol-gel route also shows some drawbacks, such as cracks related to the thickness of silica films and high hydrolysis rate of certain precursors such as germanium alkoxides. This article describes the preparation and optical characterization of erbium and ytterbium co-doped SiO2:GeO2 crack-free thick films prepared by the sol-gel route combined with a spin-coating technique using a chemically stable non-aqueous germanium oxide solution as an alternative precursor. The non-crystalline films obtained are planar waveguides exhibiting a single mode at 1,550 nm with an average thickness of 3.9 mu m presenting low percentages of porosity evaluated by the Lorentz-Lorenz Effective Medium Approximation, and low stress, according to the refractive index values measured in both transversal electric and magnetic polarizations. Weakly confining core layers (0.3% < Delta n < 0.75%) were obtained according to the refractive index difference between the core and buffer layers, suggesting that low-loss coupling EDWA may be obtained. The life time of the erbium I-4(13/2) metastable state was measured as a function of erbium concentration in different systems and based on these values it is possible to infer that the hydroxyl group was reduced and the formation of rare-earth clusters was avoided.
Resumo:
Photoexpansion and photobleaching effects have been examined in glass compositions Ga10Ge25S65 and Ga5Ge25As5S65. Such compositions are promising for optical storage and planar waveguide applications. To evaluate the photoinduced effect, samples were exposed to 351 nm light, varying power density (3-10 W/cm(2)) and exposure time (0-120 min). The exposed areas have been analyzed using atomic force microscopy (AFM) and an expansion of 800 nm is observed for composition Ga10Ge25S65 exposed during 120 min and 5 W/cm(2) power density. The optical absorption edge measured by a spectrophotometer indicates a blue shift (80 nm) after illumination in the composition Ga10Ge25S65. The morphology was examined using a scanning electron microscopy (SEM). The chemical compositions measured using a energy dispersive analyzer (EDX) indicate an increase of the number of sulfur atoms in the irradiated area. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Silica-titania planar waveguides of different thicknesses and compositions have been produced by radio-frequency sputtering and dip coating on silica substrates. Waveguides were also produced by silver exchange on a soda-lime silicate glass substrate. Brillouin scattering of the samples has been studied by coupling the exciting laser beam with a prism to different transverse-electric (TE) modes of the waveguides, and collecting the scattered light from the front surface. In multimode waveguides, the spectra depend on the m mode of excitation. For waveguides with a step index profile, two main peaks due to longitudinal phonons are present, apart from the case of the TE0 excitation, where a single peak is observed. The energy separation between the two peaks increases with the mode index. In graded-index waveguides, m-1 peaks of comparable intensities are observed. The spectra are reproduced very well by a model which considers the space distribution of the exciting field in the mode, a simple space dependence of the elasto-optic coefficients, through the value of the refraction index, and neglects the refraction of phonons. A single-fit parameter, i.e., the longitudinal sound velocity, is used to calculate as many spectra as is the number of modes in the waveguide. (C) 2003 American Institute of Physics.
Resumo:
Luminescent SnO2: x%mol Er3+ (x=0.1-2.0) thin films have been spin coated on borosilicate and silica substrates from water colloidal suspensions that could be prepared containing up to 40% in weight SnO2 nanocrystalline powders. High Resolution Transmission Electron Microscopy results show the well known SnO2 cassiterite structure and nanocrystallites around 10 nm in diameter, corroborating results from X-ray diffraction. Mono and multi layers have been prepared from the stable colloidal suspensions and films thickness was observed to increase linearly, up to 200 nm, with the colloidal suspensions nanoparticles amount. Excitation and emission spectra have been measured and Er3+ ions were found to be essentially incorporated into the cassiterite structure, substituting for Sn4+, for doping concentration lower than 0.05 mol%. Er3+ ions also appear segregated at the grains surface for higher doping concentration. The optical parameters (refractive index, thickness and propagating modes) of a waveguide sample were measured at 632.8 and 543.4 nm by the prism coupling technique. A monomodal waveguide was obtained with attenuation loss of 3.5 dB/cm along a 2.5 cm optical path.
Resumo:
Eu3+ -doped titania-silica planar waveguides were prepared from tetraethylorthotitanate (TEOT) and modified silane 3-amino-propyltriethoxysilane (APTS). Films were deposited on borosilicate glass substrates by a dip-coating technique. The refractive index, the thickness and the total attenuation coefficient of the waveguides were measured at 632.8 and 1550 nm by prism coupling technique. Starting from pure titania films, the addition of modified silane leads to a decrease in the refractive index and an increase in thickness. Squared electric field simulation has shown that the light confinement in the waveguide increases with the silane content of the so]. Emission spectra present a broad emission band due to the modified silane and EU emission transitions arising mainly from the D-5(0) level to the F-7(J) (J = 0-4) manifolds. The dependence of transition intensities and excited state lifetimes on the initial composition and also on the heat treatment performed was interpreted in terms of structural changes occurring during the preparation process. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We report the successful fabrication of planar waveguides in rare-earth doped fluoroindate glass substrates. A new procedure for waveguide fabrication using a thermally evaporated AgF nonmetallic film was developed. The refractive index changes of more than 0.03, associated to low propagation losses achieved, open new perspectives and show the potentiality of using this glass family toward further developments in fabrication and design of integrated optical devices for optical communication wavelengths.© 1995 American Institute of Physics.
Resumo:
This work presents the application of a scalar finite element formulation for Ex (TE-like) modes in anisotropic planar and channel waveguides with diagonal permittivity tensor, diffused in both transversal directions. This extended formulation considers explicitly both the variations of the refractive index and their spatial derivates inside of each finite element. Dispersion curves for Ex modes in planar and channel waveguides are shown, and the results compared with solutions obtained by other formulations.
Resumo:
Erbium activated SiO2 -HfO2 planar waveguides, doped with Er3+ concentrations ranging from 0.01 to 4 mol%, were prepared by sol-gel method. The films were deposited on v-SiO2 and silica-on-silicon substrates using dip-coating technique. The waveguides show high densification degree, effective intermingling of the two film components, and uniform surface morphology. The waveguide deposited on silica-on-silicon substrates shows one single propagation mode at 1.5μm, with a confinement coefficient of 0.81 and an attenuation coefficient of 0.8 dB/cm at 632.8nm. Emission in the C-telecommunication band was observed at room temperature for all the samples upon continuouswave excitation at 980 nm or 514.5 nm. The shape of the emission band corresponding to the 4I13/2 → 4I15/2 transition is found to be almost independent both on erbium content and excitation wavelength, with a FWHM between 44 and 48 nm. The 4I13/2 level decay curves presented a single-exponential profile, with a lifetime ranging between 1.1 - 6.6 ms, depending on the erbium concentration. Infrared to visible upconversion luminescence upon continuous-wave excitation at 980 nm was observed for all the samples. Channel waveguide in rib configuration was obtained by etching the active film in order to have a well confined mode at 1.5 μm.
Resumo:
SiO2 (1-x) - TiO2 (x) waveguides, with the mole fraction x in the range 0.07 - 0.20 and thickness of about 0.4 μm, were deposited on silica substrates by a dip-coating technique. The thermal treatments at 700-900°C, used to fully densify the xerogels, produce nucleation of TiO2 nanocrystals even for the lowest TiO2 content. The nucleation of TiO2 nanocrystals and their growth by thermal annealing up to 1300°C were studied by waveguide Raman spectroscopy, for the SiO2 (0.8) - TiO2 (0.2) composition. By increasing the annealing temperature, the Raman spectrum evolves from that typical of the silica-titania glass to that of anatase, but brookite phase is dominant at intermediate temperatures. In the low. frequency region (5-50 cm-1) of the Raman spectra, acoustic vibrations of the nanocrystals are observed. From the measured line shapes, we can deduce the size distribution of the particles. The results are compared with those obtained from the line widths in the X-ray diffraction patterns. Nanocrystals with a mean size in the range 4-20 nm are obtained, by thermal annealing in a corresponding range of 800-1300°C.
Resumo:
Planar waveguides with controlled refractive index were produced using thin films of sol-gel derived organic-inorganic hybrids, so called di-ureasils. Spectroscopic ellipsometry was used to characterize the films thickness and refractive index. UV-laser direct-writing method was used to produce Y-splitter structures with coupling ratio of 50% without the need of photoinitiators.
Resumo:
In this work are studied periodic perturbations, depending on two parameters, of planar polynomial vector fields having an annulus of large amplitude periodic orbits, which accumulate on a symmetric infinite heteroclinic cycle. Such periodic orbits and the heteroclinic trajectory can be seen only by the global consideration of the polynomial vector fields on the whole plane, and not by their restriction to any compact set. The global study involving infinity is performed via the Poincare Compactification. It is shown that, for certain types of periodic perturbations, one can seek, in a neighborhood of the origin in the parameter plane, curves C-(m) of subharmonic bifurcations, for which the periodically perturbed system has subharmonics of order m, for any integer m.