25 resultados para pacs: computer networks and techniques
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
One objective of the feeder reconfiguration problem in distribution systems is to minimize the power losses for a specific load. For this problem, mathematical modeling is a nonlinear mixed integer problem that is generally hard to solve. This paper proposes an algorithm based on artificial neural network theory. In this context, clustering techniques to determine the best training set for a single neural network with generalization ability are also presented. The proposed methodology was employed for solving two electrical systems and presented good results. Moreover, the methodology can be employed for large-scale systems in real-time environment.
Resumo:
In this paper we propose a nature-inspired approach that can boost the Optimum-Path Forest (OPF) clustering algorithm by optimizing its parameters in a discrete lattice. The experiments in two public datasets have shown that the proposed algorithm can achieve similar parameters' values compared to the exhaustive search. Although, the proposed technique is faster than the traditional one, being interesting for intrusion detection in large scale traffic networks. © 2012 IEEE.
Resumo:
Nowadays, organizations face the problem of keeping their information protected, available and trustworthy. In this context, machine learning techniques have also been extensively applied to this task. Since manual labeling is very expensive, several works attempt to handle intrusion detection with traditional clustering algorithms. In this paper, we introduce a new pattern recognition technique called Optimum-Path Forest (OPF) clustering to this task. Experiments on three public datasets have showed that OPF classifier may be a suitable tool to detect intrusions on computer networks, since it outperformed some state-of-the-art unsupervised techniques. © 2012 IEEE.
Resumo:
The need for high reliability and environmental concerns are making the underground networks the most appropriate choice of energy distribution. However, like any other system, underground distribution systems are not free of failures. In this context, this work presents an approach to study underground systems using computational tools by integrating the software PSCAD/EMTDC with artificial neural networks to assist fault location in power distribution systems. Targeted benefits include greater accuracy and reduced repair time. The results presented here shows the feasibility of the proposed approach. © 2012 IEEE.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work shows the design, simulation, and analysis of two optical interconnection networks for a Dataflow parallel computer architecture. To verify the optical interconnection network performance on the Dataflow architecture, we have analyzed the load balancing among the processors during the parallel programs executions. The load balancing is a very important parameter because it is directly associated to the dataflow parallelism degree. This article proves that optical interconnection networks designed with simple optical devices can provide efficiently the dataflow requirements of a high performance communication system.
Resumo:
In order to simplify computer management, several system administrators are adopting advanced techniques to manage software configuration of enterprise computer networks, but the tight coupling between hardware and software makes every PC an individual managed entity, lowering the scalability and increasing the costs to manage hundreds or thousands of PCs. Virtualization is an established technology, however its use is been more focused on server consolidation and virtual desktop infrastructure, not for managing distributed computers over a network. This paper discusses the feasibility of the Distributed Virtual Machine Environment, a new approach for enterprise computer management that combines virtualization and distributed system architecture as the basis of the management architecture. © 2008 IEEE.
Resumo:
To simplify computer management, various administration systems based on wired connections adopt advanced techniques to manage software configuration. Nevertheless, the strong relation between hardware and software makes for an individualism of that management, besides penalizing computational mobility and ubiquity. All these issues lead to degradation of scalability, flexibility and the facility to install and maintain distributed applications. This article presents an environment for centralized wireless communication network management, named WSE-OS (Wireless Sharing Environment - Operating Systems): a model based on Virtual Desktop Infrastructure (VDI) which associates virtualization techniques and safe remote access systems to create a distributed architecture as a base for a managing system. WSE-OS is capable of accomplishing the replication of operating system images using wireless communication network, besides offering abstraction of hardware to its clients, making the management more flexible and independent of wired connections. Results obtained from this work indicate that WSE-OS allows disseminating, through a single software configuration, the execution of data related to operating system images in client computers. WSE-OS can also be used as a management tool for operating systems in a wireless network.
Resumo:
OBJECTIVE: To carry out a retrospective study to determine whether human papillomavirus (HPV) infection and immunohistochemical expression of p53 and proliferating cell nuclear antigen (PCNA) are related to the risk of oral cancer. STUDY DESIGN: Fifty-seven oral biopsies, consisting of 30 oral squamous papillomas (OSPs) and 27 oral squamous cell carcinomas (OSCCs) were tested for the presence of HPV 6/11 and 16/18 by in situ hybridization using catalyzed signal amplification and in situ hybridization. p53 And PCNA expression was analyzed by immunohistochemistry and evaluated quantitatively by image analysis. RESULTS: Nineteen of the 57 oral lesions (33.3%) were positive for HPV. HPV 6/11 was found in 6 of 30 (20%) OSPs and 1 of 27 (3.7%) OSCCs. HPV 16/18 was found in 10 of 27 (37%) OSCCs and 2 of 30 (6.7%) OSPs. Sixteen of the 19 HPV-positive cases (84.2%) were p53 negative; 5 (9%) were HPV 6/11 and 11 (19%) HPV 16/18, with an inverse correlation between the presence of HPV DNA and p53 expression (P=.017, P < .05). PCNA expression appeared in 18 (94.7%) of HPV positive cases, showing that HPV 16/18 was associated with intensity of PCNA expression and with OSCCs (P=.037, P < .05). CONCLUSION: Quantitative evaluation of p53 by image analysis showed an inverse correlation between p53 expression and HPV presence, suggesting protein degradation. Image analysis also demonstrated that PCNA expression was more intense in HPV DNA 16/18 OSCCs. These findings suggest involvement of high-risk HPV types in oral carcinogenesis.
Resumo:
The main objective involved with this paper consists of presenting the results obtained from the application of artificial neural networks and statistical tools in the automatic identification and classification process of faults in electric power distribution systems. The developed techniques to treat the proposed problem have used, in an integrated way, several approaches that can contribute to the successful detection process of faults, aiming that it is carried out in a reliable and safe way. The compilations of the results obtained from practical experiments accomplished in a pilot radial distribution feeder have demonstrated that the developed techniques provide accurate results, identifying and classifying efficiently the several occurrences of faults observed in the feeder.
Resumo:
Autonomous robots must be able to learn and maintain models of their environments. In this context, the present work considers techniques for the classification and extraction of features from images in joined with artificial neural networks in order to use them in the system of mapping and localization of the mobile robot of Laboratory of Automation and Evolutive Computer (LACE). To do this, the robot uses a sensorial system composed for ultrasound sensors and a catadioptric vision system formed by a camera and a conical mirror. The mapping system is composed by three modules. Two of them will be presented in this paper: the classifier and the characterizer module. The first module uses a hierarchical neural network to do the classification; the second uses techiniques of extraction of attributes of images and recognition of invariant patterns extracted from the places images set. The neural network of the classifier module is structured in two layers, reason and intuition, and is trained to classify each place explored for the robot amongst four predefine classes. The final result of the exploration is the construction of a topological map of the explored environment. Results gotten through the simulation of the both modules of the mapping system will be presented in this paper. © 2008 IEEE.
Resumo:
The capacitated redistricting problem (CRP) has the objective to redefine, under a given criterion, an initial set of districts of an urban area represented by a geographic network. Each node in the network has different types of demands and each district has a limited capacity. Real-world applications consider more than one criteria in the design of the districts, leading to a multicriteria CRP (MCRP). Examples are found in political districting, sales design, street sweeping, garbage collection and mail delivery. This work addresses the MCRP applied to power meter reading and two criteria are considered: compactness and homogeneity of districts. The proposed solution framework is based on a greedy randomized adaptive search procedure and multicriteria scalarization techniques to approximate the Pareto frontier. The computational experiments show the effectiveness of the method for a set of randomly generated networks and for a real-world network extracted from the city of São Paulo. © 2013 Elsevier Ltd.