207 resultados para orbits


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work are studied periodic perturbations, depending on two parameters, of planar polynomial vector fields having an annulus of large amplitude periodic orbits, which accumulate on a symmetric infinite heteroclinic cycle. Such periodic orbits and the heteroclinic trajectory can be seen only by the global consideration of the polynomial vector fields on the whole plane, and not by their restriction to any compact set. The global study involving infinity is performed via the Poincare Compactification. It is shown that, for certain types of periodic perturbations, one can seek, in a neighborhood of the origin in the parameter plane, curves C-(m) of subharmonic bifurcations, for which the periodically perturbed system has subharmonics of order m, for any integer m.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a semi-analytical and numerical study of the perturbation caused in a spacecraft by a third-body using a double averaged analytical model with the disturbing function expanded in Legendre polynomials up to the second order. The important reason for this procedure is to eliminate terms due to the short periodic motion of the spacecraft and to show smooth curves for the evolution of the mean orbital elements for a long-time period. The aim of this study is to calculate the effect of lunar perturbations on the orbits of spacecrafts that are traveling around the Earth. An analysis of the stability of near-circular orbits is made, and a study to know under which conditions this orbit remains near circular completes this analysis. A study of the equatorial orbits is also performed. Copyright (C) 2008 R. C. Domingos et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work generates, through a sample of numerical simulations of the restricted three-body problem, diagrams of semimajor axis and eccentricity which defines stable and unstable zones for particles in S-type orbits around Pluto and Charon. Since we consider initial conditions with 0 <= e <= 0.99, we found several new stable regions. We also identified the nature of each one of these newly found stable regions. They are all associated to families of periodic orbits derived from the planar circular restricted three-body problem. We have shown that a possible eccentricity of the Pluto-Charon system slightly reduces, but does not destroy, any of the stable regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we study the basic aspects concerning the stability of the outer satellites of Jupiter. Including the effects of the four giant planets and the Sun we study a large grid of initial conditions. Some important regions where satellites cannot survive are found. Basically these regions are due to Kozai and other resonances. We give an analytical explanation for the libration of the pericenters (ω) over bar - (ω) over bar (J). Another different center is also found. The period and amplitude of these librations are quite sensitive to initial conditions, so that precise observational data are needed for Pasiphae and Sinope. The effect of Jupiter's mass variation is briefly presented. This effect can be responsible for satellite capture and also for locking (ω) over bar - (ω) over bar (J) in temporary libration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let alpha be a C(infinity) curve in a homogeneous space G/H. For each point x on the curve, we consider the subspace S(k)(alpha) of the Lie algebra G of G consisting of the vectors generating a one parameter subgroup whose orbit through x has contact of order k with alpha. In this paper, we give various important properties of the sequence of subspaces G superset of S(1)(alpha) superset of S(2)(alpha) superset of S(3)(alpha) superset of ... In particular, we give a stabilization property for certain well-behaved curves. We also describe its relationship to the isotropy subgroup with respect to the contact element of order k associated with alpha.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of the restricted three-body Earth-Moon-particle problem predicts the existence of direct periodic orbits around the Lagrangian equilibrium point L1. From these orbits, we derive a set of trajectories that form links between the Earth and the Moon and are capable of performing transfers between terrestrial and lunar orbits, in addition to defining an escape route from the Earth-Moon system. When we consider a more complex and realistic dynamical system - the four-body Sun-Earth-Moon-particle (probe) problem - the trajectories have an expressive gain of inclination when they penetrate in the lunar influence sphere, thus allowing the insertion of probes into low-altitude lunar orbits with high inclinations, including polar orbits. In this study, we present these links and investigate some possibilities for performing an Earth-Moon transfer based on these trajectories. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work we explore regions of distant direct stable orbits around the Moon. First, the location and size of apparently stable regions are searched for numerically, adopting the approach of temporary capture time presented in Vieira Neto & Winter (2001). The study is made in the framework of the planar, circular, restricted three-body problem, Earth-Moon-particle. Regions of the initial condition space whose trajectories are apparently stable are determined. The criterion adopted was that the trajectories do not escape from the Moon during an integration period of 10(4) days. Using Poincare surface of sections the reason for the existence of the two stable regions found is studied. The stability of such regions proved to be due to two families of simple periodic orbits, h1 and h2, and the associated quasi-periodic orbits that oscillate around them. The robustness of the stability of the larger region, h2, is tested with the inclusion of the solar perturbation. The size of the region decreases, but it is still significant in size and can be useful in spacecraft missions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a previous work, Vieira Neto & Winter (2001) numerically explored the capture times of particles as temporary satellites of Uranus. The study was made in the framework of the spatial, circular, restricted three-body problem. Regions of the initial condition space whose trajectories are apparently stable were determined. The criterion adopted was that the trajectories do not escape from the planet during an integration of 10(5) years. These regions occur for a wide range of orbital initial inclinations (i). In the present work it is studied the reason for the existence of such stable regions. The stability of the planar retrograde trajectories is due to a family of simple periodic orbits and the associated quasi-periodic orbits that oscillate around them. These planar stable orbits had already been studied (Henon 1970; Huang & Innanen 1983). Their results are reviewed using Poincare surface of sections. The stable non-planar retrograde trajectories, 110 degrees less than or equal to i < 180, are found to be tridimensional quasi-periodic orbits around the same family of periodic orbits found for the planar case (i = 180 degrees). It was not found any periodic orbit out of the plane associated to such quasi-periodic orbits. The largest region of stable prograde trajectories occurs at i = 60 degrees. Trajectories in such region are found to behave as quasi-periodic orbits evolving similarly to the stable retrograde trajectories that occurs at i = 120 degrees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work we consider a dynamical system of mum size particles around the Earth subject to the effects of radiation pressure. Our main goal is to study the evolution of its relative velocity with respect to the co-planar circular orbits that it crosses. The particles were initially in a circular geostationary orbit, and the particles size were in the range between 1 and 100 mum. The radiation pressure produces variations in its eccentricity, resulting in a change in its orbital velocity. The results indicated the maximum linear momentum and kinetic energy increases as the particle size increases. For a particle of 1 mum the kinetic energy is approximately 1.56 x 10(-7) J and the momentum is 6.27 x 10(-11) kg m/s and for 100 mum the energy is approximately 1.82 x 10(-4) J and the momentum is 2.14 x 10(-6) kg m/s. (C) 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.