129 resultados para neutrino
Resumo:
We propose a scheme in which the masses of the heavier leptons obey seesaw type relations. The light lepton masses, except the electron and the electron neutrino ones, are generated by one loop level radiative corrections. We work in a version of the 3-3-1 electroweak model that predicts singlets (charged and neutral) of heavy leptons beyond the known ones. An extra U(1)(Omega) symmetry is introduced in order to avoid the light leptons getting masses at the tree level. The electron mass induces an explicit symmetry breaking at U(1)(Omega). We discuss also the mixing matrix among four neutrinos. The new energy scale required is not higher than a few TeV.
Resumo:
Supersymmetric extensions of the standard model exhibiting bilinear R-parity violation can generate naturally the observed neutrino mass spectrum as well as mixings. One interesting feature of these scenarios is that the lightest supersymmetric particle (LSP) is unstable, with several of its decay properties predicted in terms of neutrino mixing angles. A smoking gun of this model in colliders is the presence of displaced vertices due to LSP decays in large parts of the parameter space. In this work we focus on the simplest model of this type that comes from minimal supergravity with universal R-parity conserving soft breaking of supersymmetry augmented with bilinear R-parity breaking terms at the electroweak scale (RmSUGRA). We evaluate the potential of the Fermilab Tevatron to probe the RmSUGRA parameters through the analysis of events possessing two displaced vertices stemming from LSP decays. We show that requiring two displaced vertices in the events leads to a reach in m(1/2) twice the one in the usual multilepton signals in a large fraction of the parameter space.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We investigate a neutrino mass model in which the neutrino data is accounted for by bilinear R-parity violating supersymmetry with anomaly mediated supersymmetry breaking. We focus on the CERN Large Hadron Collider (LHC) phenomenology, studying the reach of generic supersymmetry search channels with leptons, missing energy and jets. A special feature of this model is the existence of long-lived neutralinos and charginos which decay inside the detector leading to detached vertices. We demonstrate that the largest reach is obtained in the displaced vertices channel and that practically all of the reasonable parameter space will be covered with an integrated luminosity of 10 fb(-1). We also compare the displaced vertex reaches of the LHC and Tevatron.
Resumo:
We introduce a CP trajectory diagram in bi-probability space as a powerful tool for a pictorial representation of the genuine CP and the matter effects in neutrino oscillations. The existence of correlated ambiguity in the B is uncovered. The principles of tuning the beam energy for a determination of CP-violating phase delta and the sign of Deltam(13)(2) given baseline distance are proposed to resolve the ambiguity and to maximize the CP-odd effect. We finally point out, quite contrary to what is usually believed, that the ambiguity may be resolved with similar to 50% chance in the super-JHF experiment despite its relatively short baseline of 300 km. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
We re-analyse the non-standard interaction (NSI) solutions to the solar neutrino problem in the light of the latest solar as well as atmospheric neutrino data. The latter require oscillations (OSC), while the former do not. Within such a three-neutrino framework the solar and atmospheric neutrino sectors are connected not only by the neutrino mixing angle theta(13) constrained by reactor and atmospheric data, but also by the flavour-changing (FC) and non-universal (NU) parameters accounting for the solar data. Since the NSI solution is energy-independent the spectrum is undistorted, so that the global analysis observables are the solar neutrino rates in all experiments as well as the Super-Kamiokande day-night measurements. We find that the NSI description of solar data is slightly better than that of the OSC solution and that the allowed NSI regions are determined mainly by the rate analysis. By using a few simplified ansatzes for the NSI interactions we explicitly demonstrate that the NSI values indicated by the solar data analysis are fully acceptable also for the atmospheric data. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
We investigate the potential of a future kilometer-scale neutrino telescope, such as the proposed IceCube detector in the South Pole, to measure and disentangle the yet unknown components of the cosmic neutrino flux, the prompt atmospheric neutrinos coming from the decay of charmed particles and the extra-galactic neutrinos in the 10 TeV to 1 EeV energy range. Assuming a power law type spectra, dphi(nu)/dE(nu)similar toalphaE(nu)(beta), we quantify the discriminating power of the IceCube detector and discuss how well we can determine magnitude (alpha) as well as slope (beta) of these two components of the high energy neutrino spectrum, taking into account the background coming from the conventional atmospheric neutrinos.
Resumo:
The measurement of the mixing angle theta(13), sign of Deltam(13)(2), and the CP or T violating phase delta is fraught with ambiguities in neutrino oscillation. In this paper we give an analytic treatment of the paramater degeneracies associated with measuring the nu(mu)-->nu(e) probability and its CP and/or T conjugates. For CP violation, we give explicit solutions to allow us to obtain the regions where there exist twofold and fourfold degeneracies. We calculate the fractional differences, (Deltatheta/(θ) over bar), between the allowed solutions which may be used to compare with the expected sensitivities of the experiments. For T violation we show that there is always a complete degeneracy between solutions with positive and negative Deltam(13)(2) which arises due to a symmetry and cannot be removed by observing one neutrino oscillation probability and its T conjugate. Thus there is always a fourfold parameter degeneracy apart from exceptional points. Explicit solutions are also given and the fractional differences are computed. The biprobability CP/T trajectory diagrams are extensively used to illuminate the nature of the degeneracies.
Resumo:
We present a general formalism for extracting information on the fundamental parameters associated with neutrino masses and mixings from two or more long baseline neutrino oscillation experiments. This formalism is then applied to the current most likely experiments using neutrino beams from the Japan Hadron Facility (JHF) and Fermilab's NuMI beamline. Different combinations of muon neutrino or muon anti-neutrino running are considered. The type of neutrino mass hierarchy is extracted using the effects of matter on neutrino propogation. Contrary to naive expectation, we find that both beams using neutrinos is more suitable for determining the hierarchy provided that the neutrino energy divided by baseline (E/L) for NuMI is smaller than or equal to that of JHF, whereas to determine the small mixing angle, theta(13), and the CP or T violating phase delta, one neutrino and the other anti-neutrino are most suitable. We make extensive use of bi-probability diagrams for both understanding and extracting the physics involved in such comparisons.
Resumo:
In this work we show that we can generate neutrino masses through the type II seesaw mechanism working at TeV scale in the context of a 331 model. (C) 2001 Published by Elsevier B.V. B.V.
Resumo:
We point out that determination of the MNS matrix element \U-e3\ = s(13) in long-baseline nu(mu) --> nu(e) neutrino oscillation experiments suffers from large intrinsic uncertainty due to the unknown CP violating phase delta and sign of Deltam(13)(2). We propose a new strategy for accurate determination of theta(13); tune the beam energy at the oscillation maximum and do the measurement both in neutrino and antineutrino channels. We show that it automatically resolves the problem of parameter ambiguities which involves delta, theta(13), and the sign of Deltam(13)(2). (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this work we show that the implementation of spontaneous breaking of the lepton number in the 3-3-1 model with right-handed neutrinos gives rise to fast neutrino decay with Majoron emission and generates a bunch of new contributions to the neutrinoless double beta decay.
Resumo:
The weak gravitational field expansion method to account for the gravitationally induced neutrino oscillation effect is critically examined, then it is shown that the splitting of the neutrino phase into a kinematic and a gravitational phase is not always possible because the relativistic factor modifies the particle interference phase splitting condition in a gravitational field.
Resumo:
What can we learn from solar neutrino observations? Is there any solution to the solar neutrino anomaly which is favored by the present experimental panorama? After SNO results, is it possible to affirm that neutrinos have mass? In order to answer such questions we analyze the current available data from the solar neutrino experiments, including the recent SNO result, in view of many acceptable solutions to the solar neutrino problem based on different conversion mechanisms, for the first time using the same statistical procedure. This allows us to do a direct comparison of the goodness of the fit among different solutions, from which we can discuss and conclude on the current status of each proposed dynamical mechanism. These solutions are based on different assumptions: (a) neutrino mass and mixing, (b) a nonvanishing neutrino magnetic moment, (c) the existence of nonstandard flavor-changing and nonuniversal neutrino interactions, and (d) a tiny violation of the equivalence principle. We investigate the quality of the fit provided by each one of these solutions not only to the total rate measured by all the solar neutrino experiments but also to the recoil electron energy spectrum measured at different zenith angles by the Super-Kamiokande Collaboration. We conclude that several nonstandard neutrino flavor conversion mechanisms provide a very good fit to the experimental data which is comparable with (or even slightly better than) the most famous solution to the solar neutrino anomaly based on the neutrino oscillation induced by mass.
Resumo:
We point out that solar neutrino oscillations with large mixing angle as evidenced in current solar neutrino data have a strong impact on strategies for diagnosing collapse-driven supernova (SN) through neutrino observations. Such oscillations induce a significant deformation of the energy spectra of neutrinos, thereby allowing us to obtain otherwise inaccessible features of SN neutrino spectra. We demonstrate that one can determine temperatures and luminosities of non-electron flavor neutrinos by observing (υ) over bar (e) from galactic SN in massive water Cherenkov detectors by the charged current reactions on protons. (C) 2002 Elsevier B.V. B.V. All rights reserved.