117 resultados para negative staphylococci
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coagulase-negative staphylococci (CNS) species identification is still difficult for most clinical laboratories. The scheme proposed by Kloos and Schleifer and modified by Bannerman is the reference method used for the identification of staphylococcal species and subspecies; however, this method is relatively laborious for routine use since it requires the utilization of a large number of biochemical tests. The objective of the present study was to compare four methods, i.e., the reference method, the API Staph system (bioMérieux) and two methods modified from the reference method in our laboratory (simplified method and disk method), in the identification of 100 CNS strains. Compared to the reference method, the simplified method and disk method correctly identified 100 and 99% of the CNS species, respectively, while this rate was 84% for the API Staph system. Inaccurate identification by the API Staph method was observed for Staphylococcus epidermidis (2.2%), S. hominis (25%), S. haemolyticus (37.5%), and S. warneri (47.1%). The simplified method using the simple identification scheme proposed in the present study was found to be efficient for all strains tested, with 100% sensitivity and specificity and proved to be available alternative for the identification of staphylococci, offering, higher reliability and lower cost than the currently available commercial systems. This method would be very useful in clinical microbiology laboratory, especially in places with limited resources.
Resumo:
Coagulase-negative staphylococci (CNS) have been identified as the etiological agent in various infections and are currently the microorganisms most frequently isolated in nosocomial infections. However, little is known about the virulence factors produced by CNS that contribute to the pathogenesis of infections caused by these microorganisms. The study of CNS isolated from infectious processes of newborns hospitalized in the Neonatal Unit of the Hospital of the Botucatu Medical School, Unesp, indicated Staphylococcus epidermidis as the most frequently isolated species (77.8%), which was also associated with clinically significant situations. The analysis of virulence factors revealed the production of slime in 20 (17.1%) of all CNS samples isolated and the synthesis of a broad spectrum of enzymes and toxins, including hemolysins (19.6%), lipase (17.1%), lecithinase (3.4%), DNAse (15.4%), thermonuclease (7.7%), and enterotoxin A, B or C (37.6%). Taking into consideration that the etiological importance of CNS has often been neglected, the present investigation confirmed that these microorganisms should not be ignored or classified as mere contaminants.
Resumo:
Um total de 109 cepas de Staphylococci coagulase-negativa foi isolado de leite de vacas com mastite clínica e subclínica, em 35 fazendas, situadas em nove estados brasileiros, no período de fevereiro a maio de 2005. Os isolados foram investigados em relação a susceptibilidade in vitro a diversos agentes antimicrobianos. A resistência à penicilina foi a observação mais freqüente (93,5%), seguida por sulfonamida (88,9%), novobiocina (88,6%) e ampicilina (85,3%). Todas as cepas examinadas mostraram resistência a pelo menos uma das drogas antimicrobianas testadas. Cepas apresentando resistência múltipla foram extremamente comuns, com 10,0% dos microrganismos isolados apresentando resistência a todas as drogas antimicrobianas. Os resultados obtidos indicaram que as cepas de Staphylococci coagulase-negativas, isoladas no Brasil, apresentaram um alto grau de resistência a antimicrobianos. Estes resultados são, provavelmente, uma conseqüência da pressão devida ao uso intensivo de drogas antimicrobianas.
Resumo:
The presence of Staphylococcus aureus in the nasal cavities and pericatheter skin of peritoneal dialysis patients put them at high risk of developing peritonitis. However, it is not clear whether the presence of coagulase-negative staphylococci (CNS) in the nasal passages and skin of patients is related to subsequent occurrence of peritoneal infection. The aim of the present study was to verify the relationship between endogenous sources of S. aureus and CNS and occurrence of peritonitis in patients undergoing peritoneal dialysis. Thirty-two patients on peritoneal hemodialysis were observed for 18 months. Staphylococcus species present in their nasal passage, pericatheter skin and peritoneal effluent were identified and compared based on drug susceptibility tests and dendrograms, which were drawn to better visualize the similarity among strains from extraperitoneal sites as well as their involvement in the causes of infection. Out of 288 Staphylococcus strains isolated, 155 (53.8%) were detected in the nasal cavity, 122 (42.4%) on the skin, and 11 (3.8%) in the peritoneal effluent of patients who developed peritonitis during the study. The most frequent Staphylococcus species were CNS (78.1%), compared with S. aureus (21.9%). Among CNS, S. epidermidis was predominant (64.4%), followed by S. warneri (15.1%), S. haemolyticus (10.7%), and other species (9.8%). Seven (64%) out of 11 cases of peritonitis analyzed presented similar strains. The same strain was isolated from different sites in two (66%) out of three S. aureus infection cases. In the six cases of S. epidermidis peritonitis, the species that caused infection was also found in the normal flora. From these, two cases (33%) presented highly similar strains and in three cases (50%), it was difficult to group strains as to similarity. Patients colonized with multidrug-resistant S. epidermidis strains were more predisposed to infection. Results demonstrated that an endogenous source of S. epidermidis could cause peritonitis in peritoneal dialysis patients, similarly to what has been observed with S. aureus.
Resumo:
The detection of staphylococcal enterotoxins is decisive for the confirmation of an outbreak and for the determination of the enterotoxigenicity of strains. Since the recognition of their antigenicity, a large number of serological methods for the detection of enterotoxins in food and culture media have been proposed. Since immunological methods require detectable amounts of toxin, molecular biology techniques represent important tools in the microbiology laboratory. In the present study, polymerase chain reaction (PCR) was used to identify genes responsible for the production of enterotoxins and toxic shock syndrome toxin 1 (TSST-1) in S. aureus and coagulase-negative staphylococci (CNS) isolated from patients and the results were compared with those obtained by the reverse passive latex agglutination (RPLA) assay. PCR detection of toxin genes revealed a higher percentage of toxigenic S. aureus strains (46.7%) than the RPLA method (38.3%). Analysis of the toxigenic profile of CNS strains showed that 26.7% of the isolates produced some type of toxin, and one or more toxin-specific genes were detected in 40% of the isolates. These results suggests the need for further studies in order to better characterize the pathogenic potential of CNS and indicate that attention should be paid to the toxigenic capacity of this group of microorganisms.
Resumo:
Background: The ability of biofilm formation seems to play an essential role in the virulence of coagulase-negative staphylococci (CNS). The most clearly characterized component of staphylococcal biofilms is the polysaccharide intercellular adhesin (PIA) encoded by the icaADBC operon. Biofilm production was studied in 80 coagulase-negative staphylococci (CNS) strains isolated from clinical specimens of newborns with infection hospitalized at the Neonatal Unit of the University Hospital, Faculty of Medicine of Botucatu, and in 20 isolates obtained from the nares of healthy individuals without signs of infection. The objective was to compare three phenotypic methods with the detection of the icaA, icaD and icaC genes by PCR. Findings: Among the 100 CNS isolates studied, 82% tested positive by PCR, 82% by the tube test, 81% by the TCP assay, and 73% by the CRA method. Using PCR as a reference, the tube test showed the best correlation with detection of the ica genes, presenting high sensitivity and specificity. Conclusions: The tube adherence test can be indicated for the routine detection of biofilm production in CNS because of its easy application and low cost and because it guarantees reliable results with excellent sensitivity and specificity. © 2010 Cunha et al; licensee BioMed Central Ltd.
Resumo:
Background: Staphylococcus is a clinically important genus because of its capacity to produce enterotoxins and to cause food poisoning. Staphylococci are the most frequent microorganisms of the skin and mucosal microbiota, with an estimated 20 to 40% of individuals carrying these bacteria on their hands or nose. Since nutrition professionals are involved in the handling and preparation of foods and are possible carriers of these bacteria, the objective of this study was to investigate the presence of Staphylococcus on the hands and in the nasal fossae of undergraduate nutrition students and to determine the enterotoxigenic capacity of these microorganisms. Methods and Findings: A total of 201 strains were isolated from the hands and nose of 61 nutrition students. Of these, 180 (89.5%) were identified as coagulasenegative staphylococci and 21 (10.5%) as S. aureus. Thirty-seven (18.4%) Staphylococcus isolates were producers of enterotoxin A. Toxin production was detected in 5 (19%) of the S. aureus isolates and in 31 (17.2%) of the coagulase-negative staphylococci. Conclusions: This study demonstrated a large number of enterotoxin-producing staphylococci on the hands and nose of nutrition students and professionals involved in the handling and preparations of foods. These findings indicate the need for adequate hygiene measures to prevent food poisoning. © iMedPub.
Resumo:
Coagulase-negative staphylococci (CoNS) are the microorganisms most frequently isolated from clinical samples and are commonly found in neonatal blood cultures. Oxacillin is an alternative treatment of choice for CoNS infections; however, resistance to oxacillin can have a substantial impact on healthcare by adversely affecting morbidity and mortality. The objective of this study was to detect and characterise oxacillin-resistant CoNS strains in blood cultures of newborns hospitalised at the neonatal ward of the University Hospital of the Faculty of Medicine of Botucatu. One hundred CoNS strains were isolated and the mecA gene was detected in 69 of the CoNS strains, including 73.2% of Staphylococcus epidermidis strains, 85.7% of Staphylococcus haemolyticus strains, 28.6% of Staphylococcus hominis strains and 50% of Staphylococcus lugdunensis strains. Among these oxacillin-resistant CoNS strains, staphylococcal cassette chromosome mec (SCCmec) type I was identified in 24.6%, type II in 4.3%, type III in 56.5% and type IV in 14.5% of the strains. The data revealed an increase in the percentage of CoNS strains isolated from blood cultures from 1991-2009. Furthermore, a predominant SCCmec profile of the oxacillin-resistant CoNS strains isolated from neonatal intensive care units was identified with a prevalence of SCCmec types found in hospital-acquired strains.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Infections caused by the genus Staphylococcus are of great importance for human health. Staphylococcus species are divided into coagulase-positive staphylococci, represented by S. aureus, a pathogen that can cause infections of the skin and other organs in immunocompetent patients, and coagulase-negative staphylococci (CNS) which comprise different species normally involved in infectious processes in immunocompromised patients or patients using catheters. Oxacillin has been one of the main drugs used for the treatment of staphylococcal infections; however, a large number of S. aureus and CNS isolates of nosocomial origin are resistant to this drug. Methicillin resistance is encoded by the mecA gene which is inserted in the SCCmec cassette. This cassette is a mobile genetic element consisting of five different types and several subtypes. Oxacillin-resistant strains are detected by phenotypic and genotypic methods. Epidemiologically, methicillin-resistant S. aureus strains can be divided into five large pandemic clones, called Brazilian, Hungarian, Iberian, New York/Japan and Pediatric. The objective of the present review was to discuss aspects of resistance, epidemiology, genetics and detection of oxacillin resistance in Staphylococcus spp., since these microorganisms are increasingly more frequent in Brazil.