50 resultados para molecular organization
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) are used to investigate molecular organization in Langmuir-Blodgett (LB) films of two kinds of lignins. The lignins were extracted from sugar cane bagasse using distinct extraction processes and are referred to here as ethanol lignin (EL) and saccharification lignin (SAC). AFM images show that LB films from EL have a flat surface in comparison with those from SAC. For the latter, ellipsoidal aggregates are seen oriented perpendicularly to the substrate. This result is confirmed by a combination of transmission and reflection FTIR measurements, which also point to lignin aggregates preferentially oriented perpendicularly to the substrate. For LB films from EL, on the other hand, aggregates are preferentially oriented parallel to the substrate, again consistent with the flat surface observed in AFM data. The vibrational spectroscopy data for cast films from both lignins show random molecular organization, as one should expect.
Resumo:
There are few reports on the genomic organization of 5S rDNA in fish species. To characterize the 5S rDNA nucleotide sequence and chromosomal localization in the Neotropical fishes of the genus Brycon, 5S rDNA copies from seven species were generated by PCR. The nucleotide sequences of the coding region (5S rRNA gene) and the nontranscribed spacer (NTS) were determined, revealing that the 5S rRNA genes were highly conserved, while the NTSs were widely variable among the species analyzed. Moreover, two classes of NTS were detected in each species, characterized by base substitutions and insertions-deletions. Using fluorescence in situ hybridization (FISH), two 5S rDNA chromosome loci that could be related to the two 5S rDNA NTS classes were observed in at least one of the species studied. 5S rDNA sequencing and chromosomal localization permitted the characterization of Brycon spp. and suggest a higher similarity among some of them. The data obtained indicate that the 5S rDNA can be an useful genetic marker for species identification and evolutionary studies.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thin solid films of bis benzimidazo perylene (AzoPTCD) were fabricated using physical vapor deposition (PVD) technique. Thermal stability and integrity of the AzoPTCD PVD films during the fabrication (similar to 400 degrees C at 10(-6) Torr) were monitored by Raman scattering. Complementary thermogravimetric results showed that thermal degradation of AzoPTCD occurs at 675 degrees C. The growth of the PVD films was established through UV-vis absorption spectroscopy, and the surface morphology was surveyed by atomic force microscopy (AFM) as a function of the mass thickness. The AzoPTCD molecular organization in these PVD films was determined using the selection rules of infrared absorption spectroscopy (transmission and reflection-absorption modes). Despite the molecular packing, X-ray diffraction revealed that the PVD films are amorphous. Theoretical calculations (density functional theory, B3LYP) were used to assign the vibrational modes in the infrared and Raman spectra. Metallic nanostructures, able to sustain localized surface plasmons (LSP) were used to achieve surface-enhanced resonance Raman scattering (SERRS) and surface-enhanced fluorescence (SEF).
Resumo:
The surface pressure-molecular area (pi-A) isotherms for Langmuir monolayers of four perylenetetracarboxylic (PTCD) derivatives, measured with varying subphase temperatures and compression speeds, are reported. The behavior of these PTCD derivatives at the water-air interface is modeled using the rigid docking method. This approach is the first attempt to model the molecular orientation of PTCD on the water surface to be compared with experimental Langmuir isotherms. Through this methodology, it would be possible to anticipate aggregation and determine if favorable spatial orientations of perylenes are generated on the water surface. The pi-A isotherm experiments show that these molecules can support high surface pressures, indicating strong packing on the water surface and that the isotherms are compression speed independent but temperature dependent. The molecular orientation and stacking was further examined in Langmuir-Blodgett (LB) monolayers deposited onto glass and glass coated with Ag island films using UV-visible absorption and surface-enhanced fluorescence (SEF) measurements.
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Langmuir-Blodgett (LB) films from a ruthenium complex mer-[RuCl3 (dppb)(4-Mepy)] (dppb = PPh2 (CH2)(4)-PPh2; 4-Mepy = 4-methylpyridine), termed Ru-Pic, display a distinct color, which is different from the coloration exhibited by cast films or chloroform solutions. The solution and cast films are red, while the LB films are green-bluish. The manifestation of the blue color in the LB film finds its explanation in a unique absorption band at 690 nm, which is associated with the oxidation of the phosphine moieties. Fluorescence emission and absorption-reflection infrared spectroscopy measurements revealed the molecular organization in the LB films. In contrast, cast films showed a random distribution of complexes. Surface-enhanced Raman scattering was also used in an attempt to identify the main interactions in Ru-Pic.
Resumo:
A PPV derivative, poly(2-methoxy,5-(n-octadecyl)-p-phenylenevinylene) (OC1OC18-PPV), has been synthesized via the Gilch route and used to fabricate Langmuir and Langmuir-Blodgett (LB) films. True monomolecular films were formed at the air/water interface, which were successfully transferred onto different types of substrate. Using UV-visible absorption, FTIR, fluorescence and Raman scattering spectroscopies we observed that the polymer molecules were randomly distributed in the LB film, with no detectable anisotropy. This is in contrast to the anisotropic LB films of a previously reported PPV derivative, poly(2-methoxy-5-n-hexyloxy)-p-phenylenevinylene (OC1OC6-PPV), which is surprising because the longer chain of OC1OC18-PPV investigated here was expected to lead to more ordered films. As a consequence of the lack of order, LB films of OC1OC18-PPV exhibit lower photoconductivity and require higher operating voltage in a polymer light-emitting diode (PLED) in comparison with LB films of OC1OC6-PPV. This result confirms the importance of molecular organization in the LB film to obtain efficient PLEDs. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)