42 resultados para minimum angular velocity
Resumo:
The running velocities associated to lactate minimum (V-lm), heart rate deflection (V-HRd), critical velocity (CV), 3000 M (V-3000) and 10000 m performance (V-10km) were compared. Additionally the ability of V-lm and VHRd on identifying sustainable velocities was investigated.Methods. Twenty runners (28.5 +/- 5.9 y) performed 1) 3000 m running test for V3000; 2) an all-out 500 in sprint followed by 6x800 m incremental bouts with blood lactate ([lac]) measurements for V-lm; 3) a continuous velocity-incremented test with heart rate measurements at each 200 m for V-HRd; 4) participants attempted to 30 min of endurance test both at V-lm(ETVlm) and V-HRd(ETVHRd). Additionally, the distance-time and velocity-1/time relationships produced CV by 2 (500 m and 3000 m) or 3 predictive trials (500 m, 3000 m and distance reached before exhaustion during ETVHRd), and a 10 km race was recorded for V-10km.Results. The CV identified by different methods did not differ to each other. The results (m(.)min(-1)) revealed that V-.(lm) (281 +/- 14.8)< CV (292.1 +/- 17.5)=V-10km (291.7 +/- 19.3)< V-HRd (300.8 +/- 18.7)=V-3000 (304 +/- 17.5) with high correlation among parameters (P < 0.001). During ETVlm participants completed 30 min of running while on the ETVHRd they lasted only 12.5 +/- 8.2 min with increasing [lac].Conclusion. We evidenced that CV and Vim track-protocols are valid for running evaluation and performance prediction and the parameters studied have different significance. The V-lm reflects the moderate-high intensity domain (below CV), can be sustained without [lac] accumulation and may be used for long-term exercise while the V-HRd overestimates a running intensity that can be sustained for long-time. Additionally, V-3000 and V-HRd reflect the severe intensity domain (above CV).
Resumo:
The purpose of this work is to predict the minimum fluidization velocity Umf in a gas-solid fluidized bed. The study was carried out with an experimental apparatus for sand particles with diameters between 310μm and 590μm, and density of 2,590kg/m3. The experimental results were compared with numerical simulations developed in MFIX (Multiphase Flow with Interphase eXchange) open source code [1], for three different sizes of particles: 310mum, 450μm and 590μm. A homogeneous mixture with the three kinds of particles was also studied. The influence of the particle diameter was presented and discussed. The Ergun equation was also used to describe the minimum fluidization velocity. The experimental data presented a good agreement with Ergun equation and numerical simulations. Copyright © 2011 by ASME.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study investigated kinematic patterns in clinically normal German Shepherd dogs (GSDs) compared to those with hip dysplasia and with no clinical signs of lameness. Two groups of GSDs, including 10 clinically healthy dogs (G1) and 10 with hip dysplasia (G2), were trotted on a treadmill at a constant speed. Kinematic data were collected by a 3-camera system and analysed by a motion-analysis program. Flexion and extension joint angles and angular velocities were determined for the shoulder, elbow, carpal, hip, stifle, and tarsal joints.Within each group, the differences between the right and left limbs in all kinematic variables were not significant. Minimum angle, angular displacement and minimum angular velocity did not differ between groups. Significant differences were observed in the maximum angular velocity and maximum angle of the hip joint (dysplastic. >. healthy), and in the maximum angular velocity of the carpal joint (healthy. >. dysplastic). It was concluded that, when trotting on a treadmill, dysplastic dogs with no signs of lameness may present joint kinematic alterations in the hind as well as the forelimbs. © 2012 Elsevier Ltd.
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper proposes a different experimental setup compared with the traditional ones, in order to determine the acceleration of gravity, which is carried out by using a fluid at a constant rotation. A computerized rotational system-by using a data acquisition system with specific software, a power amplifier and a rotary motion sensor-is employed in order to evaluate the angular velocity and g. An equation to determine g is inferred from fluid mechanics. For this purpose, the fluid's parabolic shape inside a cylindrical receptacle is considered using a rotational movement.
Resumo:
In this work, we describe an experimental setup in which an electric current is used to determine the angular velocity attained by a plate rotating around a shaft in response to a torque applied for a given period. Based on this information, we show how the moment of inertia of a plate can be determined using a procedure that differs considerably from the ones most commonly used, which generally involve time measurements. Some experimental results are also presented which allow one to determine parameters such as the exponents and constant of the conventional equation of a plate's moment of inertia.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background: The literature reports that the eccentric muscular action produces greater force and lower myoelectric activity than the concentric muscular action, while the heart rate (HR) responses are bigger during concentric contraction. Objectives: To investigate the maximum average torque (MAT), surface electromyographic (SEMG) and the heart rate (HR) responses during different types of muscular contraction and angular velocities in older men. Methods: Twelve healthy men (61.7 +/- 1.6years) performed concentric (C) and eccentric (E) isokinetic knee extension-flexion at 60 degrees/s and 120 degrees/s. SEMG activity was recorded from vastus lateralis muscle and normalized by Root Mean Square-RMS (mu V) of maximal isometric knee extension at 60 degrees. HR (beats/min) and was recorded at rest and throughout each contraction. The data were analyzed by the Friedman test for repeated measures with post hoc Dunn's test (p<0.05). Results: The median values of MAT (N.m/kg) was smaller and the RMS (mu V) was larger during concentric contraction (C60 degrees/s=2.80 and 0.99; C120 degrees/s=2.46 and 1.0) than eccentric (E60 degrees/s=3.94 and 0.85; E120 degrees/s=4.08 and 0.89), respectively. The HR variation was similar in the four conditions studied. Conclusion: The magnitude of MAT and RMS responses in older men were dependent of the nature of the muscular action and independent of the angular velocity, whereas HR response was not influenced by these factors.
Resumo:
O objetivo deste estudo foi comparar a taxa de desenvolvimento de força (TDF) nas contrações isométrica e isocinética concêntrica a 60°.s-1 e 180°.s-1. Quatorze indivíduos do gênero masculino (idade = 23,1 ± 2,8 anos; estatura = 174 ± 31,3cm; massa corporal = 81 ± 12kg) realizaram inicialmente uma familiarização ao equipamento isocinético. Posteriormente, os indivíduos realizaram em ordem randômica cinco contrações isocinéticas máximas para os extensores do joelho a 60°.s-1 e 180°.s-1 para determinar o torque máximo concêntrico (TMC) e duas contrações isométricas máximas de 3s para determinar o torque máximo isométrico (TMI). O TMI (301,4 ± 56,0N.m) foi maior do que o TMC a 60°.s-1 (239,8 ± 42,2N.m) e 180°.s-1 (175,0 ± 32,5 N.m). O TMC a 60°.s-1 foi maior do que o TMC a 180°.s-1. Para os intervalos de 0-30ms e 0-50ms, a TDF na condição isométrica (1.196,6 ± 464,6 e 1.326,5 ± 514,2N.m.s-1, respectivamente) foi similar à TDF a 60°.s-1 (1.035,4 ± 446,2 e 1.134,3 ± 448,4N.m.s-1) e maior do que a 180°.s-1 (656,7 ± 246,6 e 475,2 ± 197,9N.m.s-1), sendo ainda que a TDF na contração concêntrica a 180°.s-1 foi menor do que a 60°.s-1. No intervalo de 0-100ms, a TDF da contração isométrica (1.248,8 ± 417,4N.m.s-1) foi maior que a obtida na contração isocinética rápida (909,2 ± 283,4N.m.s-1). A TDF obtida na contração isocinética lenta (1.005,4 ± 247,7N.m.s-1) foi similar à obtida na contração isométrica e na concêntrica isocinética rápida. No intervalo 0-150ms, a TDF isométrica (1.084,2 ± 332,1N.m.s-1) foi maior do que as concêntricas (60°.s-1 e 180°.s-1) (834,8 ± 184,2 e 767,6 ± 201,8N.m.s-1, respectivamente), não existindo diferenças entre estas duas últimas. Conclui-se que a TDF é dependente do tipo e da velocidade de contração, suportando a hipótese de que maiores velocidades de contração acarretam maior inibição do drive neural no início do movimento.