24 resultados para mentally disordered offenders
Resumo:
A strong greenish-light photoluminescence (PL) emission was measured at room temperature for disordered and ordered powders of CaMoO4 prepared by the polymeric precursor method. The structural evolution from disordered to ordered powders was accompanied by XRD. Raman spectroscopy, and TEM imagery. High-level quantum mechanical calculations in the density functional framework were used to interpret the formation of the structural defects of disorder powders in terms of band diagram and density of states. Complex cluster vacancies [MoO3 center dot V-O(z)] and [CaO7 center dot V-O(z)] (where V-O(z) = V-O(X), V-O(center dot), V-O(center dot center dot)) were suggested to be responsible to the appearance of new states shallow and deeply inserted in the band gap. These defects give rise to the PL in disordered powders. The natural PL emission of ordered CaMoO4 was attributed to an intrinsic slight distortion of the [MoO4] tetrahedral in the short range.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Disordered and crystalline Ba0.45Sr0.55TiO3 (BST) powder processed at low temperature was synthesized by the polymeric precursor method. The single-phase perovskite structure of the ceramics was identified by the Raman and X-ray diffraction techniques. Photoluminescence at room temperature was observed only in a disordered BST sample. Increasing the calcination time intensified the photoluminescence (PL), which reached its maximum value in the sample heat treated at 300 degrees C for 30 h. This emission may be correlated with the structural disorder. Periodic ab initio quantum-mechanical calculations using the CRYSTAL98 program can yield important information regarding the electronic and structural properties of crystalline and disordered solids. The experimental and theoretical results indicate the presence of intermediary energy levels in the band gap. This is ascribed to the break in symmetry, which is responsible for visible photoluminescence in the material's disordered state at room temperature. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Visible photoluminescence (PL) was observed for the first time at room temperature in structurally disordered calcium strontium tungstate powder, Ca0.60Sr0.40WO4 (CSW), obtained by the polymeric precursor method. The PL behavior of CSW powders has been analyzed as a function of the disorder rate, based on experimental and theoretical studies. Quantum mechanical theory based on density functional theory at the B3LYP level has been employed to study the electronic structure of two periodic models representing both crystalline and disordered powders. Their electronic structures have been analyzed in terms of density of states, band dispersion and charge densities. The calculations indicate a break in symmetry when passing from crystalline to disordered models, creating localized electronic levels above the valence band. Moreover, a negative charge transfer process takes place from the [WO3] cluster to the [WO4] cluster. The polarization induced by the break in symmetry and the existence of localized levels favors the creation of trapped holes and electrons, originating the PL phenomenon. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The emission of wide band photoluminescence showed a synergic effect on barium zirconate and barium titanate thin films in alternate multilayer system at room temperature by 488 nm exiting wavelength. The thin films obtained by spin-coating were annealed at 350, 450, and 550 degrees C for 2 h. The X-ray patterns revealed the complete separation among the BaTiO3 and BaZrO3 phases in the adjacent films. Visible and intense photoluminescence was governed by BaZrO3 thin films in the multilayer system. Quantum mechanics calculations were used in order to simulate ordered and disordered thin films structures. The disordered models, which were built by using the displacement of formers and modifier networks, showed a different symmetry in each system, which is in accordance with experimental photoluminescence emission, thus allowing to establish a correlation among the structural and optical properties of these multilayered systems.
Resumo:
The SrWO4 (SWO) powders were synthesized by the polymeric precursor method and annealed at different temperatures. The SWO structure was obtained by X-ray diffraction and the corresponding photoluminescence (PL) spectra was measured. The PL results reveal that the structural order-disorder degree in the SWO lattice influences in the PL emission intensity. Only the structurally order-disordered samples present broad and intense PL band in the visible range. To understand the origin of this phenomenon, we performed quantum-mechanical calculations with crystalline and order-disordered SWO periodic models. Their electronic structures were analyzed in terms of band structure. The appearance of localized levels in the band gap of the order-disordered structure was evidenced and is a favorable condition for the intense PL to occur.
Resumo:
Photoluminescence (PL) properties at room temperature of disordered Ba0.50Sr0.50(Ti0.80Sn0.20)O-3 (BST:Sn) thin films were obtained by the polymeric precursor method. X-ray diffraction data and corresponding PL properties have been measured using the 488 nm line of an argon ion laser. The PL spectra of the film annealed at 350 degrees C for 21 h are stronger than those of the film annealed at 350 degrees C for 28 h, indicating a disorganized structure. The energy band gaps of the crystalline and amorphous BST:Sn thin films were 3.35 and 2.25 eV, respectively. The doped BST thin films also tend to a cubic structure, resulting from TiO6 deformations. (c) 2006 American Institute of Physics.
Resumo:
Sm-doped PbTiO3 powder was synthesized by the polymeric precursor method, and was heat treated at different temperatures. The x-ray diffraction, photoluminescence, and UV-visible were used as a probe for the structural order degree short-, intermediate-, and long-range orders. Sm-3+ ions were used as markers of these order-disorder transformations in the PbTiO3 system. From the Rietveld refinement of the Sm-doped PbTiO3 x-ray diffraction data, structural models were obtained and analyzed by periodic ab initio quantum mechanical calculations using the CRYSTAL 98 package within the framework of density functional theory at the B3LYP level. This program can yield important information regarding the structural and electronic properties of crystalline and disordered structures. The experimental and theoretical results indicate the presence of the localized states in the band gap, due to the symmetry break, which is responsible for visible photoluminescence at room temperature in the disordered structure. (c) 2006 American Institute of Physics.
Resumo:
In this work, the polymeric precursor method Was used to obtain disordered Zn2TiO4 powders, either Undoped or doped with Sn4+, Cr3+ and V5+, to be applied its photoluininescent material. The characterization was undertaken by means of thermal analysis (TG and DTA), X-ray diffraction (XRD), infrared spectroscopy (IR) and photoluminescence (PL). Previous works stated that titanate octahedra containing a short Ti-O distance show efficient luminescence at roorn temperature if these octahedra are isolated from each other. In the present work, the phenomenon was observed in condensed octahedra, sharing edges. The room temperature PL noticed in undoped Zn2TiO4 had its intensity increased by the dopant addition-the increase was of about 300% for V5+ doping 400% for Cr3+ and 800% for Sn4+. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Intense and broad visible photoluminescent (PL) band in structurally disordered SrWO4 compounds was observed at room temperature. The polycrystalline scheelite strontium tungstate (SrWO4) samples prepared by the polymeric precursor method at different temperatures of annealing were structurally characterized by x-ray diffraction and Fourier transform Raman spectroscopy measurements. Quantum-mechanical calculations showed that the local disorder in the cluster of the network modifiers Sr has a very important role in the charge transfer. The experimental and theoretical results are in good agreement, indicating that the generation of the intense visible PL band can be related to short-range order-disorder degree in the scheelite structure. (c) 2006 American Institute of Physics.
Resumo:
Violet-blue photoluminescence was produced at room temperature in a structurally disordered SrZrO3 perovskite structure with a 350.7 nm excitation line. The intensity of this emission was higher than that of any other perovskites previously studied. The authors discuss the role of structural order-disorder that favors the self-trapping of electrons and charge transference, as well as a model to elucidate the mechanism that triggers photoluminescence. In this model the wide band model, the most important events occur before excitation. (c) 2007 American Institute of Physics.
Resumo:
Disordered and crystalline Mn-doped BaTiO3 (BTO:Mn) powders were synthesized by the polymeric precursor method. After heat treatment, the nature of visible photoluminescence (PL) at room temperature in amorphous BTO:Mn was discussed, considering results of experimental and theoretical studies. X-ray diffraction (XRD), PL, and UV-vis were used to characterize this material. Rietveld refinement of the BTO:Mn from XRD data was used to built two models, which represent the crystalline BTO:Mn (BTO:Mn,) and disordered BTO:Mn (BTO:Mn-d) structures. Theses models were analyzed by the periodic ab initio quantum mechanical calculations using the CRYSTAL98 package within the framework of density functional theory at the B3LYP level. The experimental and theoretical results indicated that PL is related with the degree of disorder in the BTO:Mn powders and also suggests the presence of localized states in the disordered structure. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A joint experimental and theoretical study has been carried out to rationalize for the first time the photoluminescence (PL) properties of disordered CaWO4 (CWO) thin films. From the experimental side, thin films of CWO have been synthesized following a soft chemical processing, their structure has been confirmed by X-ray diffraction data and corresponding PL properties have been measured using the 488 nm line of an argon ion laser. Although we observe PL at room temperature for the crystalline thin films, the structurally disordered samples present much more intense emission. From the theoretical side, first principles quantum mechanical calculations, based on density functional theory at B3LYP level, have been employed to study the electronic structure of a crystalline (CWO-c) and asymmetric (CWO-a) periodic model. Electronic properties are analyzed in the light of the experimental results and their relevance in relation to the PL behavior of CWO is discussed. The symmetry breaking process on going from CWO-c to CWO-a creates localized electronic levels above the valence band and a negative charge transfer process takes place from threefold, WO3, to fourfold, WO4,. tungsten coordinations. The correlation of both effects seems to be responsible for the PL of amorphous CWO. (c) 2005 Elsevier B.V. All rights reserved.