92 resultados para holographic interferometry
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A method for improving the accuracy of surface shape measurement by multiwavelength holography is presented. In our holographic setup, a Bi12TiO20 photorefractive crystal was the holographic recording medium, and a multimode diode laser emitting in the red region was the light source in a two-wave mixing scheme. on employing such lasers the resulting holographic image appears covered with interference fringes corresponding to the object relief, and the interferogram spatial frequency is proportional to the diode laser's free spectral range (FSR). Our method consists in increasing the effective free spectral range of the laser by positioning a Fabry-Perot etalon at the laser output for mode selection. As larger effective values of the laser FSR were achieved, higher-spatial-frequency interferograms were obtained and therefore more sensitive and accurate measurements were performed. The quantitative evaluation of the interferograms was made through the phase-stepping technique, and the phase map unwrapping was carried out through the cellular-automata method. For a given surface, shape measurements with different interferogram spatial frequencies were performed and compared with respect to measurement noise and visual inspection. (c) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The application of multi-wavelength holography for surface shape measurement is presented. In our holographic setup a Bi12TiO 20 (BTO) photorefractive crystal was the holographic recording medium and a multimode diode laser emitting in the red region was the light source in a two-wave mixing scheme. The holographic imaging with multimode lasers results in multiple holograms in the BTO. By employing such lasers the resulting holographic image appears covered of interference fringes corresponding to the object relief and the interferogram spatial frequency is proportional to the diode laser free spectral range (FSR). We used a Fabry-Perot étalon at the laser output for laser mode selection. Thus, larger effective values of the laser FSR were achieved, leading to higher-spatial frequency interferograms and therefore to more sensitive and accurate measurements. The quantitative evaluation of the interferograms was performed through the phase stepping technique (PST) and the phase map unwrapping was carried out through the Cellular-Automata method. For a given surface, shape measurements with different interferogram spatial frequencies were performed and compared, concerning measurement noise and visual inspection.
Resumo:
We present a recent development in holography with multimode, large free-spectral range (FSR) diode lasers in photorefractive sillenite crystals. A novel refractometry method based on this type of holographic recording in Bi12TiO20 (BTO) crystals is proposed. The holographic image of a prism-shaped transparent sample appears covered of interference fringes, and as the sample is properly translated, the fringes run along the holographic image. An expression providing the refractive index of the medium as a function of the sample displacement and the correspondent number of running fringes was derived. The refractive indexes of optical (BK7) glass, ethanol, hexan, cumene and aqueous solution of NaCl with different concentrations were measured in order to test the method. The obtained results are in good agreement with the ones reported in literature or measured by us using a commercial Abbe refractometre. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This work presents a review of recent developments in phase-stepping real-time holographic interferometry with photorefractive sillenite crystals. Quantitative results are shown in micro-rotation, micro-displacement, and micro-deformation measurements, and in wave-optics and surface analysis as well. The phase stepping was carried out in a four-frame process and the resulting phase map was unwrapped by applying a sin/cos filter. The experimental results are in good agreement with the ones obtained through other means, showing the promising potentialities of phase-stepping real-time holographic interferometry for in situ visualisation, monitoring and analysis in non-destructive testing.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We studied the shape measurement of semiconductor components by holography with photorefractive Bi12TiO20 crystal as holographic medium and two diode lasers emitting in the red region as light sources. By properly tuning and aligning the lasers a synthetic wavelength was generated and the resulting holographic image of the studied object appears modulated by cos2-contour fringes which correspond to the intersection of the object surface with planes of constant elevation. The position of such planes as a function of the illuminating beam angle and the tuning of the lasers was studied, as well as the fringe visibility. The fringe evaluation was performed by the four stepping technique for phase mapping and through the branch-cut method for phase unwrapping. A damage in an integrated circuit was analysed as well as the relief of a coin was measured, and a precision up to 10 μm was estimated. © 2009 SPIE.
Resumo:
In this work we demonstrate the use of holographic lithography for generation of large area plasmonic periodic structures. Submicrometric array of holes, with different periods and thickness, were recorded in gold films, in areas of about 1 cm2, with homogeneity similar to that of samples recorded by Focused Ion Beam. In order to check the plasmonic properties, we measured the transmission spectra of the samples. The spectra exhibit the typical surface plasmon resonances (SPR) in the infrared whose position and width present the expected behavior with the period of the array and film thickness. The shift of the peak position with the permittivity of the surrounding medium demonstrates the feasebility of the sample as large area sensors. © 2009 SPIE.
Resumo:
In this work we studied the changes of the optical constants of films in the binary system Sb2O3-Sb2S3 induced by light in the VIS-UV. The measurements were performed before and after homogeneous irradiation of the films to a Hg lamp and in real time during the holographic exposure of the samples (at 458nm). Changes of the absorption coefficient (amplitude grating) and refractive index (phase grating) were measured simultaneously using the self-diffraction using the holographic setup. Besides the films presented a strong photodarkening effect under homogeneous irradiation, the samples holographically exposed presented only refractive index modulations. None amplitude modulation was measured in real time for spatial frequencies of about 1000 l/mm. © 2009 SPIE.
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
A novel setup for imaging and interferometry through reflection holography with Bi12TiPO20(BTO) sillenite photorefractive crystals is proposed. A variation of the lensless Denisiuk arrangement was developed resulting in a compact, robust and simple interferometer. A red He-Ne laser was used as light source and the holographic recording occurred by diffusion with the grating vector parallel to the crystal [0 0 1]-axis. In order to enhance the holographic image quality and reduce noise a polarizing beam splitter (PBS) was positioned at the BTO input and the crystal was tilted around the [0 0 1]-axis. This enabled the orthogonally polarized transmission and diffracted beams to be separated by the PBS, providing the holographic image only. The possibility of performing deformation and strain analysis as well as vibration measurement of small objects was demonstrated. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
When the electro-optic and acousto-optic effects are combined into a single device, the resulting acousto-electro-optic (AEO) modulator shows improved flexibility to overcome some limitations of the individual modulators or their cascade combinations. By using optical interferometry, it is possible to investigate the AEO modulator behavior as a function of this applied voltage. By this way, a lithium niobate AEO modulator is positioned in one of the arms of a Mach-Zehnder interferometer and operates at 62 MHz frequency, which constitutes the intermediate frequency of the heterodyne interferometer. Operating the AEO modulator in the acousto-optic small diffraction efficiency regime, the photodetected signal amplitude and phase are analyzed, and the induced phase shift, transmission curve and linearity response are obtained. The experimental results show good agreement with that expected from the coupled-mode theory. The possibility of linear control of the optical phase shift by the external voltage, from 0 to 2 p radians, is demonstrated.
Resumo:
The use of implants to rehabilitation of total edentulous, partial edentulous or single tooth is increasing, it is due to the high rate of success that this type of treatment present. The objective of this study was to analyze the mechanical behavior of different positions of two dental implants in a rehabilitation of 4 teeth in the region of maxilla anterior. The groups studied were divided according the positioning of the implants. The Group 1: Internal Hexagonal implant in position of lateral incisors and pontic in region of central incisors; Group 2: Internal Hexagonal implant in position of central incisors and cantilever of the lateral incisors and Group3 - : Internal Hexagonal implants alternate with suspended elements. The Electronic Speckle Pattern Interferometry (ESPI) technique was selected for the mechanical evaluation of the 3 groups performance. The results are shown in interferometric phase maps representing the displacement field of the prosthetic structure.
Resumo:
By incorporating the holographic principle in a time-depending Lambda-term cosmology, new physical bounds on the arbitrary parameters of the model can be obtained. Considering then the dark energy as a purely geometric entity, for which no equation of state has to be introduced, it is shown that the resulting range of allowed values for the parameters may explain both the coincidence problem and the universe accelerated expansion, without resorting to any kind of additional structures. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)