70 resultados para heat capacity laser
Resumo:
Density, heat capacity and thermal conductivity of liquid egg products, such as egg white, egg yolk, whole egg and various white and yolk blends, were determined as affected by temperature and water content ranging from 273 to 311 K and 51.8 to 88.2% (mass), respectively. Polynomial models fitted the experimental data very well, showing a linear relationship both for temperature and water content. (c) 2005 Published by Elsevier Ltd.
Resumo:
Heat capacities of binary aqueous solutions of different concentrations of sucrose, glucose, fructose, citric acid, malic acid, and inorganic salts were measured with a differential scanning calorimeter in the temperature range from 5degreesC to 65degreesC. Heat capacity increased with increasing water content and increasing temperature. At low concentrations, heat capacity approached that of pure water, with a less pronounced effect of temperature, and similar abnormal behavior of pure water with a minimum around 30degreesC-40degreesC. Literature data, when available agreed relatively well with experimental values. A correction factor, based on the assumption of chemical equilibrium between liquid and gas phase in the Differential Scanning Calorimeter, was proposed to correct for the water evaporation due to temperature rise. Experimental data were fitted to predictive models. Excess molar heat capacity was calculated using the Redlich-Kister equation to represent the deviation from the additive ideal model.
Resumo:
A thorough study of the thermal performance of multipass parallel cross-flow and counter-cross-flow heat exchangers has been carried out by applying a new numerical procedure. According to this procedure, the heat exchanger is discretized into small elements following the tube-side fluid circuits. Each element is itself a one-pass mixed-unmixed cross-flow heat exchanger. Simulated results have been validated through comparisons to results from analytical solutions for one- to four-pass, parallel cross-flow and counter-cross-flow arrangements. Very accurate results have been obtained over wide ranges of NTU (number of transfer units) and C* (heat capacity rate ratio) values. New effectiveness data for the aforementioned configurations and a higher number of tube passes is presented along with data for a complex flow configuration proposed elsewhere. The proposed procedure constitutes a useful research tool both for theoretical and experimental studies of cross-flow heat exchangers thermal performance.
Resumo:
Due to the wide range of design possibilities, simple manufactured, low maintenance and low cost, cross-flow heat exchangers are extensively used in the petroleum, petrochemical, air conditioning, food storage, and others industries. In this paper a mathematical model for cross-flow heat exchangers with complex flow arrangements for determining epsilon -NTU relations is presented. The model is based on the tube element approach, according to which the heat exchanger outlet temperatures are obtained by discretizing the coil along the tube fluid path. In each cross section of the element, tube-side fluid temperature is assumed to be constant because the heat capacity rate ratio C*=Cmin/Cmax tends toward zero in the element. Thus temperature is controlled by effectiveness of a local element corresponding to an evaporator or a condenser-type element. The model is validated through comparison with theoretical algebraic relations for single-pass cross-flow arrangements with one or more rows. Very small relative errors are obtained showing the accuracy of the present model. epsilon -NTU curves for several complex circuit arrangements are presented. The model developed represents a useful research tool for theoretical and experimental studies on heat exchangers performance.
Resumo:
Objective: The aim of this study is to analyze the effects of copper vapor laser radiation on the radicular wall of human teeth. Materials and Methods: Immediately after the crowns of 10 human uniradicular teeth were cut along the cement-enamel junction, a chemical-surgical preparation of the radicular canals was completed. Then the roots were longitudinally sectioned to allow for irradiation of the surfaces of the dentin walls of the root canals. The hemi-roots were separated into two groups: one (control) with five hemi-roots that were not irradiated, and another (experimental) with 15 hemi-roots divided into three subgroups that were submitted to the following exposure times: 0.02,0.05, and 0.1 s. A copper vapor laser (510.6 nm) with a total average power of 6.5 W in green emission, frequency of 16.000 Hz, and pulse duration of 30 ns was used. Results: The results obtained by scanning electron microscope analysis showed the appearance of a cavity in the region of laser beam impact, with melting, recrystallization, and cracking on the edges of the dentin of the cavity due to heat diffusion. Conclusions: We determined that the copper vapor laser produces significant morphologic changes in the radicular wall of human teeth when using the parameters in this study. However, further research should be done to establish parameters that are compatible with dental structure in order to eliminate thermal damages. © Mary Ann Liebert, Inc.
Ecological impacts from syngas burning in internal combustion engine: Technical and economic aspects
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The density, heat capacity and thermal conductivity of mango pulp (Mangifera indica L. cv. Tommy Atkins) were determined at moisture contents of between 0.9 and 0.52 kg kg(-1) (w.b.) and temperatures of between 20 and 80 degrees C. The experimental data were satisfactorily fitted (explained variation values >99.1%) as functions of the moisture content and temperature by using multivariate linear models. In the range of conditions considered, the moisture content exhibits a greater influence on the studied properties than temperature. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We propose a simple quantum field theoretical toy model for black-hole evaporation and study the backreaction of Hawking radiation onto the classical background. It turns out that the horizon is also pushed back in this situation (i.e., the interior region shrinks) though this backreaction is not caused by energy conservation but by momentum balance. The effective heat capacity and induced entropy variation can have both signs-depending on the parameters of the model.
Resumo:
Using a kink of arbitrary shape as a toy model for a black hole ( horizon), we study the back-reaction of the evaporation process and find that the horizon is always pushed back ( as in the gravitational case). The associated heat capacity and entropy variation, on the other hand, can be positive or negative, depending on the parameters.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Heat capacity, thermal conductivity, and density of whole milk, skimmed milk, and partially skimmed milk were determined at concentrations varying from (72.0 to 92.0) mass % water content and from (0.1 to 7.8) mass % fat content, at temperatures ranging from (275.15 to 344.15) K. Heat capacity and thermal conductivity varied from (3.4 to 4.1) J(.)g(-) K-1.(-1) and from (0.5 to 0.6) W(.)m(-1) K-1.(-1), respectively. Density varied from (1011.8 to 1049.5) kg(.)m(-3). Polynomial functions were used to model the dependence of the properties upon the studied variables. A linear relationship was obtained for all the properties. In the tested range, water content exhibited a greater influence on the properties, while fat content showed a smaller influence.
Resumo:
Through the analyses of the Miyazawa-Jernigan matrix it has been shown that the hydrophobic effect generates the dominant driving force for protein folding. By using both lattice and off-lattice models, it is shown that hydrophobic-type potentials are indeed efficient in inducing the chain through nativelike configurations, but they fail to provide sufficient stability so as to keep the chain in the native state. However, through comparative Monte Carlo simulations, it is shown that hydrophobic potentials and steric constraints are two basic ingredients for the folding process. Specifically, it is shown that suitable pairwise steric constraints introduce strong changes on the configurational activity, whose main consequence is a huge increase in the overall stability condition of the native state; detailed analysis of the effects of steric constraints on the heat capacity and configurational activity are provided. The present results support the view that the folding problem of globular proteins can be approached as a process in which the mechanism to reach the native conformation and the requirements for the globule stability are uncoupled.
Resumo:
Tuberculosis remains as one of the main cause of mortality worldwide due to a single infectious agent, Mycobacterium tuberculosis. The aroK-encoded M. tuberculosis Shikimate Kinase (MtSK), shown to be essential for survival of bacilli, catalyzes the phosphoryl transfer from ATP to the carbon-3 hydroxyl group of shikimate (SKH), yielding shikimate-3-phosphate and ADP. Here we present purification to homogeneity, and oligomeric state determination of recombinant MtSK. Biochemical and biophysical data suggest that the chemical reaction catalyzed by monomeric MtSK follows a rapid-equilibrium random order of substrate binding, and ordered product release. Isothermal titration calorimetry (ITC) for binding of ligands to MtSK provided thermodynamic signatures of non-covalent interactions to each process. A comparison of steady-state kinetics parameters and equilibrium dissociation constant value determined by ITC showed that ATP binding does not increase the affinity of MtSK for SKH. We suggest that MtSK would more appropriately be described as an aroL-encoded type II shikimate kinase. Our manuscript also gives thermodynamic description of SKH binding to MtSK and data for the number of protons exchanged during this bimolecular interaction. The negative value for the change in constant pressure heat capacity (ΔCp) and molecular homology model building suggest a pronounced contribution of desolvation of non-polar groups upon binary complex formation. Thermodynamic parameters were deconvoluted into hydrophobic and vibrational contributions upon MtSK:SKH binary complex formation. Data for the number of protons exchanged during this bimolecular interaction are interpreted in light of a structural model to try to propose the likely amino acid side chains that are the proton donors to bulk solvent following MtSK:SKH complex formation. © 2013 Rosado et al.