35 resultados para gongylophorus
Resumo:
Atta sexdens L, ante feed on the Fungus they cultivate on cut leaves inside their nests. The fungus, Leucoagaricus gongylophorus, metabolizes plant polysaccharides, such as xylan, starch, pectin, and cellulose, mediating assimilation of these compounds lay the ants, This metabolic integration may be an important part of the ant-fungus symbiosis, and it involves primarily xylan and starch, both of which support rapid fungal growth. Cellulose seems to be less important for symbiont nutrition, since it is poorly degraded and assimilated by the fungus. Pectin is rapidly degraded but slowly assimilated by L. gongylophorus, and its degradation may occur so that the fungus can more easily access other polysaccharides in the leaves.
Resumo:
The focus of this study was the identification of compounds from plant extracts for use in crop protection. This paper reports on the toxic activity of fractions of leaf extracts of Ricinus communis L (Euphorbiaceae) and isolated active compounds in the leaf-cutting ant Atta sexdens rubropilosa Forel and its symbiotic fungus Leucoagaricus gongylophorus (Singer) Moller. The main compounds responsible for activity against the fungus and ant in leaf extracts of R communis were found to be fatty acids for the former and ricinine for the ants. (C) 2004 Society of Chemical Industry.
Resumo:
Leucoagaricus gongylophorus, the symbiotic fungus of the leaf-cutting ants, degrades starch, this degradation being supposed to occur in the plant material which leafcutters forage to the nests, generating most of the glucose which the ants utilize for food. In the present investigation, we show that laboratory cultures of L. gongylophorus produce extracellular alpha-amylase and maltase which degrade starch to glucose, reinforcing that the ants can obtain glucose from starch through the symbiotic fungus. Glucose was found to repress a-amylase and, more severely, maltase activity, thus repressing starch degradation by L. gongylophorus, so that we hypothesize that: (1) glucose down-regulation of starch degradation also occurs in the Atta sexdens fungus garden; (2) glucose consumption from the fungus garden by A. sexdens stimutates degradation of starch from plant material by L. gongylophorus, which may represent a mechanism by which Leafcutters can control enzyme production by the symbiotic fungus. Since glucose is found in the fungus garden inside the nests, down-regulation of starch degradation by glucose is supposed to occur in the nest and play a part in the control of fungal enzyme production by leafcutters. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
Leucoagaricus gongylophorus, the fungus cultured by the leaf-cutting ant Atta sexdens, produces polysaccharidases that degrade leaf components by generating nutrients believed to be essential for ant nutrition. We evaluated pectinase, amylase, xylanase, and cellulase production by L. gongylophorus in laboratory cultures and found that polysaccharidases are produced during fungal growth on pectin, starch, cellulose, xylan, or glucose but not cellulase, whose production is inhibited during fungal growth on xylan. Pectin was the carbon source that best stimulated the production of enzymes, which showed that pectinase had the highest production activity of all of the carbon sources tested, indicating that the presence of pectin and the production of pectinase are key features for symbiotic nutrition on plant material. During growth on starch and cellulose, polysaccharidase production level was intermediate, although during growth on xylan and glucose, enzyme production was very low. We propose a possible profile of polysaccharide degradation inside the nest, where the fungus is cultured on the foliar substrate.
Resumo:
The aim of this study was to select virulent strains of microfungi against Leucoagaricus gongylophorus, a symbiotic fungus cultivated by leaf-cutting ants. The results from in vitro assays showed that microfungal strains had a variable and significant impact on the colony development of L. gongylophorus. Specifically, Trichoderma harzianum, Escovopsis weberi CBS 810.71 and E. weberi A088 were more effective, inhibiting the L. gongylophorus colonies by 75, 68 and 67%, respectively (P < 0.05) after 15 days. Strain E. weberi A086 and Acremonium kiliense were less effective: 43 and 26%, respectively (P < 0.05). In spite of the current negative perspective of a microbiological control approach for these ants, the present work discusses the possibility of using mycopathogenic fungi for the control of these insects, and points out the importance of encouraging more studies in this area.
Resumo:
Leucocoprinus gongylophorus, the fungus cultured by the leaf-cutting ant Atta sexdens rubropilosa, is able to degrade efficiently cellulose, microcrystaline cellulose, carboximethylcellulose, and cellobiose. Analysis of the degradation products indicate that the fungus produce extracellular β-glucosidase, exo- and endo-glucanase. The importance of cellulose degradation to the association of fungus and ant is discussed.
Resumo:
This work determined toxicity and attractiveness of straight-chain fatty acids (C 5 to C 12) to Atta sexdens rubropilosa (Forel) workers. The effect to the symbiotic fungus, Leucoagaricus gongylophorus (Singer) Möller, was also tested with the fatty acids C 6 to C 12. A strong mortality of leaf-cutting ants that were fed with an artificial diet containing fatty acids C to C at concentrations above 1.0 mg.ml -1 was observed. Rice flakes impregnated with solutions of these fatty acids were repellent to leaf-cutting ants. Contact experiments showed that treatments with C 6 and C 7 at concentration of 100 mg.ml -1 significantly reduced the survival rate of leaf-cutting ants. The fatty acids C 8 to C 11 were toxic to leaf-cutting ants when topically tested at concentration of 200 mg.ml -1. In relation to the fungus' bioassays, the fatty acids C 6 to C 12 at concentration of 0.1 mg.ml -1 inhibited 100% of the fungal development. Although when the concentration was reduced by half no inhibition effects were observed. The results showed that straight-chain fatty acids have desirable properties for controlling leaf-cutting ants since they directly interfere with both organisms of the symbiotic relationship. The potential of fatty acids as well as ways to control leaf-cutting ants with these compounds are discussed in this article.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
1 Nine synthetic amides similar to natural N-piperidine-3-(4,5-methylenedioxyphenyl)-2-(E)-propenainide and N-pyrrolidine-3-(4,5-methylenedyoxiphenyl)2-(E)-propenamide were synthesized and identified by their spectroscopic data.2 the toxicity of these synthetic amides to the Atta sexdens rubropilosa workers and the antifungal activity against Leticoagaricus gongylophorus, the symbiotic fungus of the leaf-cutting ants, were determined.3 Workers ants that were fed daily on an artificial diet to which these compounds were added had a higher mortality rate than the controls for N-pyrrolidine-3(3',4'-methylenedioxyphenyl)-2-(E)-propenamide and N-benzyl-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide at a concentration of 100 mu g/mL.4 the completely inhibition (100%) of the fungal growth was observed with N-piperldine-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide and N,N-diethyl-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide at concentrations of 50 and 100 mu g/mL and N-pirrolidine-3-(3',4'-methylenedioxyphenyl)-2-(E)-propenamide at a concentration of 100 mu g/mL.5 the possibility of controlling these insects in the future using synthetic piperamides that can simultaneously target both organisms is discussed.
Resumo:
Two new benzoic acid esters of triterpene alcohols [lup-20 (29)-en-28-oic acid 3 alpha, 7 beta -dibenzoate and 3 alpha -hydroxy-lup-20(29)-en-28-ic acid 7 beta -benzoate] were isolated from the stem bark of Picramnia teapensis Tul. The structures of these compounds were established on the basis of spectral analyses. Other known compounds, beta -sitosterol, estigmasterol, lupeol and epilupeol, were identified in mixture by GC-MS. The triterpene esters have not shown in-vitro inhibitory effect on the growth of Leucoagaricus gongylophorus (Fisher), referred also as Leucocoprinus gongylophorus (Heim), syn Rozites gongylophora (Moller), the symbiotic fungus cultivated by the leaf-cutting ant Atta sexdens L.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Leaf-cutting ants of the genera Atta and Acromyrmex (tribe Attini) are symbiotic with basidiomycete fungi of the genus Leucoagaricus (tribe Leucocoprineae), which they cultivate on vegetable matter inside their nests. We determined the variation of the 28S, 18S, and 5.8S ribosomal DNA (rDNA) gene loci and the rapidly evolving internal transcribed spacers 1 and 2 (ITS1 and ITS2) of 15 sympatric and allopatric fungi associated with colonies of 11 species of leafcutter ants living up to 2,600 km apart in Brazil. We found that the fungal rDNA and ITS sequences from different species of ants were identical (or nearly identical) to each other, whereas 10 GenBank Leucoagaricus species showed higher ITS variation. Our findings suggest that Atta and Acromyrmex leafcutters living in geographic sites that are very distant from each other cultivate a single fungal species made up of closely related lineages of Leucoagaricus gongylophorus. We discuss the strikingly high similarity in the ITS1 and ITS2 regions of the Atta and Acromyrmex symbiotic L. gongylophorus studied by us, in contrast to the lower similarity displayed by their non-symbiotic counterparts. We suggest that the similarity of our L. gongylophorus isolates is an indication of the recent association of the fungus with these ants, and propose that both the intense lateral transmission of fungal material within leafcutter nests and the selection of more adapted fungal strains are involved in the homogenization of the symbiotic fungal stock.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)