73 resultados para germ cell separation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many factors can lead cells to apoptosis during the various stages of cell life. This study was undertaken to characterize germ cell death in the epididymis of the adult Artibeus lituratus by histochemical and immunohistochemical techniques using light microscopy and transmission electron microscopy. The results showed that cells with a nuclear phenotype and ultrastructural characteristics of chromatin compaction were common in apoptosis. The Apoptag test confirmed that the suspected cells were apoptotic. It is suggested that immature germ cells, when released from the germinative epithelium, may be directed towards the epididymis instead of being disposed of in the testicle. Furthermore, intact immature cells can leave the testicle in the initial phases of apoptosis and complete this phenomenon in the epididymis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Craniopharyngiomas and germ cell tumors (GCT) may affect the pituitary-hypothalamic region during childhood. Although different in origin, their clinical and radiological features may be similar. In this article we present a 5-year-old girl with clinical and radiological findings (computer tomography calcification) that were initially considered as craniopharyngioma. However clinical outcome, blood and cerebral spinal fluid tumoral markers, and results from anatomopathology and immunohistochemistry disclosed a mixed GCT. This case report highlights that some clinical features and radiological findings of pituitary-hypothalamic tumors may be misdiagnosed as craniopharyngioma mainly when there is a mature teratoma with cartilaginous tissue differentiation. Copyright© ABE&M.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although there are almost thirty-thousand species of fish living in a great variety of habitats and utilizing vast reproductive strategies, our knowledge of morphofunctional and quantitative aspects of testis structure and spermatogenesis is still incipient for this group of vertebrates. In this review, we discuss aspects that are important to better understanding of testis structure and function, and of the development of germ cells (GC) during spermatogenesis. To achieve this, we have recently completed a number of studies presenting morphometric and functional data related to the numbers of GC and Sertoli cells (SC) per each type of spermatogenic cyst, the number of spermatogonial generations, the SC efficiency, and the magnitude of GC loss that normally occurs during spermatogenesis. We also investigated SC proliferation and the relationship of this important event to early spermatogenic cysts. The available data strongly suggest that SC proliferation in sexually mature tilapia is the primary factor responsible for the increase in testis size and for determination of the magnitude of sperm production. The influence of temperature on the duration of spermatogenesis in tilapia was also evaluated and we have used this knowledge to deplete endogenous spermatogenesis in this teleost, in order to develop an experimental system for GC transplantation. This exciting technique results in new possibilities for investigation of spermatogenesis and spermatogonial stem cell biology, creating also an entirely new and promising scenario in biotechnology - transgenic animal production and the preservation of the genetic stocks of valuable animals or endangered species. © Springer Science+Business Media B.V. 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective was to characterize female germ cell renewal during the annual reproductive cycle in two species of ostariophysian fish with distinct reproductive strategies: a siluriform, Pimelodus maculatus, in which oocyte development is group synchronous and the annual reproductive period is short; and a characiform, Serrasalmus maculatus, with asynchronous oocyte development and a prolonged reproductive period. These reproductive strategies result in fish determinate and indeterminate fecundity, respectively. Annual reproductive phases were determined by biometric and histologic analysis of gonads and interpreted according to new proposals for phase classification and stages of oocyte development (with special attention to germinal epithelium activity). Histologically, there were two types of oogonia in the germinal epithelium: single oogonia and those in mitotic proliferation. Oogonial proliferation and their entry into meiosis resulted in formation of cell nests (clusters of cells in the ovarian lamellae). Morphometric analysis was used to estimate germ cell renewal. Based on numbers of single oogonia in the lamellar epithelium, and nests with proliferating oogonia or early prophase oocytes throughout the annual reproductive cycle, oogonial proliferation and entrance into meiosis were more intense during the regenerating phase and developing phase, but decreased sharply (P < 0.05) during the spawning-capable phase. Oogonial proliferation gradually recovered during the regressing phase. We concluded that, independent of species or features of the reproductive cycle, germ cell renewal occurred during the regenerating phase, ensuring availability of eggs for the spawning event. © 2013 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Flotation is a process of cell separation based on the affinity of cells to air bubbles. In the present work, flotability and hydrophobicity were determined using cells from different yeasts (Hansenulla polymorpha, Saccharomyces cerevisiae, Candida albicans), which were propagated in different media and at different temperatures. Alterations to the supernatant of the cells were also carried out before the flotation assays. The results described here indicate that supernatants of the yeast cells can play a more important role on flotation than cell-wall hydrophobicity. For example, wall-hydrophobicity of strain FLT-01 of S. cerevisiae was high but flotation did not occur when their washed cells were resuspended in water. Additions of neopeptone to cultures of S. cerevisiae and H. polymorpha repressed flotation and increased the volume of foam. An additional task of the present work was to show that the relationship between cell-wall hydrophobicity and flotation performance was dependent on the method used for the measurement of hydrophobicity. Based on the assay procedure, two types of hydrophobicity were distinguished: (a) the apparent hydrophobicity for cells suspended in the medium and expressed by the degree of cell affinity to the organic solvent in the two-phase system supernatant/hexane; (b) the standard hydrophobicity, which was determined for cells suspended in a standard solution (acetate buffer, in the present work) within the acetate buffer/hexane system. Flotation of cells of S. cerevisiae and C albicans were best related to the degree of apparent hydrophobicity (varying with the supernatant composition at the cell/medium interface) rather than to the degree of standard hydrophobicity (varying with the alterations in the wall components, since the liquid phase was constant in the assay). However, depending on the yeast unpredictable results can be obtained. For example, cells of H. polymorpha exhibited good flotation associated to a high degree of standard hydrophobicity while having a lower degree of apparent hydrophobicity. Concerning growth temperature, flotation of cells of C albicans was strongly repressed when the temperature was raised from 30 to 38 degreesC while a similar effect was not observed in cultures of S. cerevisiae and H. polymorpha. It is difficult to understand and predict flotation of yeast cells but simple modifications made to the supernatant of cultures can activate or repress flotation. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)