149 resultados para digital radiography systems
Resumo:
Digital radiography in the inspection of welded pipes to be installed under deep water offshore gas and oil pipelines, like a presalt in Brazil, in the paper has been investigated. The aim is to use digital radiography for nondestructive testing of welds as it is already in use in the medical, aerospace, security, automotive, and petrochemical sectors. Among the current options, the DDA (Digital Detector Array) is considered as one of the best solutions to replace industrial films, as well as to increase the sensitivity to reduce the inspection cycle time. This paper shows the results of this new technique, comparing it to radiography with industrial films systems. In this paper, 20 test specimens of longitudinal welded pipe joints, specially prepared with artificial defects like cracks, lack of fusion, lack of penetration, and porosities and slag inclusions with varying dimensions and in 06 different base metal wall thicknesses, were tested and a comparison of the techniques was made. These experiments verified the purposed rules for parameter definitions and selections to control the required digital radiographic image quality as described in the draft international standard ISO/DIS 10893-7. This draft is first standard establishing the parameters for digital radiography on weld seam of welded steel pipes for pressure purposes to be used on gas and oil pipelines.
Resumo:
Conventional radiography, using industrial radiographic films, has its days numbered. Digital radiography, recently, has taken its place in various segments of products and services, such as medicine, aerospace, security, automotive, etc. As well as the technological trend, the digital technique has brought proven benefits in terms of productivity, sensitivity, the environment, tools for image treatment, cost reductions, etc. If the weld to be inspected is on a serried product, such as, for example, a pipe, the best option for the use of digital radiography is the plane detector, since its use can reduce the length of the inspection cycle due to its high degree of automation. This work tested welded joints produced with the submerged arc process, which were specially prepared in such a way that it shows small artificial cracks, which served as the basis forcomparing the sensitivity levels of the techniques involved. After carrying out the various experiments, the digital meth odshowed the highest sensitivity for the image quality indicator (IQI) of the wire and also in terms of detecting small discontinuities, indicating that the use of digital radiography using the plane detector had advantages over the conventional technique (Moreira et al. Digital radiography, the use of plane detectors for the inspection of welds in oil pipes and gas pipes.9th COTEQ and XXV National Testing Congress for Non Destructive Testing and Inspection; Salvador, Bahia, Brazil and Bavendiek et al. New digital radiography procedure exceeds film sensitivity considerably in aerospace applications. ECNDT; 2006; Berlin). The works were carried out on the basis of the specifications for oil and gas pipelines, API 5L 2004 edition (American Petroleum Institute. API 5L: specification for line pipe. 4th ed. p. 155; 2004) and ISO 3183 2007 edition (International Organization for Standardization, ISO 3183. Petroleum and gas industries - steel pipes for pi pelines transportation systems. p. 143; 2007). © 2010 Taylor & Francis.
Resumo:
Purpose: the purpose of this in vivo study was to compare the accuracy of primary incisor length determined by direct digital radiography (straight-line measurement and grid superimposition) and measurement of the actual tooth length. Methods. Twenty-two primary maxillary incisors that required extractions were selected from 3- to 5-year-old children. The teeth were radiographed with an intraoral sensor using the long cone technique and a sensor holder (30-cm focus-to-sensor distance). The exposure time was 03 seconds. Tooth length was estimated by using straight-line and grid measurements provided by the distance measurement feature of the Computed Dental Radiography digital dental imaging system. The actual tooth length was obtained by measuring the extracted tooth with G digital caliper. Data were analyzed statistically by Pearson's correlation coefficient and a paired t test. Results: There were statistically significant differences (P=.007) between the 2 measurement techniques and between the actual tooth lengths and grid measurements. There was no statistically significant difference (P=38) between straight-line measurements and actual tooth lengths, showing that the straight-line measurements were more accurate. Underestimation of the actual tooth length, however, occurred in 45% of the straight-line measurements and in 73% of the grid measurements. Conclusion: It is possible to determine primary tooth length in digital radiographs using onscreen measurements with 0 reasonable degree of accuracy.
Resumo:
Introduction: Root resorption can cause damage in orthodontic patients. Digital subtraction radiography (DSR) is a useful resource for the detection of mineral losses. The purpose of this study was to compare the efficacy of digital radiography (DR) and DSR in detecting simulated external root resorption. Examiner agreement between the 2 techniques was also evaluated. Methods: Root resorptions of various sizes were simulated on the apical and lingual aspects of 49 teeth from 9 dry human mandibles. The teeth were radiographed in standardized conditions. The radiographs were registered with Regeemy Image Registration and Mosaicking (version 0.2.43-RCB, DPI-INPE, Sao Jose dos Campos, São Paulo, Brazil) and subtracted with Image Tool (University of Texas Health Science Center at San Antonio). The subtracted images and the digital radiographs were evaluated by 3 oral radiologists. Results: No statistically significant differences were found for the methods in the detection of apical root resorptions, independently from lesion size, and of lingual resorptions of 1.2 mm or greater. DSR was significantly better than DR for detection of lingual resorptions up to 1 mm. Resorptions less than 0.5 mm were not precisely detected by either method. DSR provided better intraexaminer and interexaminer agreement than did DR. Conclusions: Both methods are precise for detection of apical root resorptions as small as 0.5 mm and lingual resorptions of 1 mm or more. However, DSR frequently performed better than did DR. (Am J Orthod Dentofacial Orthop 2011;139:324-33)
Resumo:
The purpose of this article was to compare the mean value of optical density of four porcelains commonly used for fabrication of inlay/ onlay prostheses using direct digital radiograph. The sample consisted of 20 2-mm thick porcelain specimens (measured by digital pachymeter): Empress (Ivoclair), Simbios (Degussa), Vita Omega 900 and Vitadur Alpha (Vita Zahnfabrik). The values of optical density of the specimens were expressed in millimeters aluminum equivalent (mm eq Al). The samples were X-rayed using two charge coupled devices (CCD) - RVG (Trophy) - Visualix (Gendex) and a phosphor plate system - Digora (Soredex). The optical density reading was performed with Image Tool 1.28 in a total of 110 measurements. Statistical analysis showed that there were statistically significant differences in all materials studied (p < 0.05) regardless of the radiographic system used. The highest optical density value was found for Omega 900 (1.8988 mmeqAl - Visualix - Gendex) and the lowest for Vitadur Alpha (0.8647 - Visualix - Gendex). Thus, the material presenting the highest degree of optical density was Omega 900, Empress and Simbios presented intermediate optical density values, Vitadur Alpha presented the lowest value, and the optical density of porcelains was not influenced by the digital radiography systems.
Resumo:
Background. Methods for determining the root canal length of the primary tooth should yield accurate and reproducible results. In vitro studies show some limitations, which do not allow their findings to be directly transferred to a clinical situation. Aim. To compare the accuracy of radiographic tooth length obtained from in vivo digital radiograph with that obtained from ex vivo digital radiograph. Method. Direct digital radiographs of 20 upper primary incisors were performed in teeth (2/3 radicular resorption) that were radiographed by an intraoral sensor, according to the long-cone technique. Teeth were extracted, measured, and mounted in a resin block, and then radiographic template was used to standardise the sensor-target distance (30 cm). The apparent tooth length (APTL) was obtained from the computer screen by means of an electronic ruler accompanying the digital radiography software (CDR 2.0), whereas the actual tooth length (ACTL) was obtained by means of a digital calliper following extraction. Data were compared to the ACTL by variance analysis and Pearson’s correlation test. Results. The values for APTL obtained from in vivo radiography were slightly underestimated, whereas those values obtained from ex vivo were slightly overestimated. No significance was observed between APTL and ACTL. Conclusion. The length of primary teeth estimated by in vivo and ex vivo comparisons using digital radiography was found to be similar to the actual tooth length.
Resumo:
P>AimTo compare the efficacy of different digital radiographic imaging systems for determining the length of endodontic files.MethodologyK-type endodontic files were introduced into the canals of 40 extracted human permanent single-rooted teeth and fixed in place at random lengths. The teeth were radiographed using Digora Optime (R), CygnusRay MPS (R) and CDR Wireless (R) digital imaging systems. Six observers measured every file length in all the images and repeated this procedure in 50% of the image samples, and assigned a score to the level of difficulty found. Analysis of variance for differences between digital systems and Tukey's test were performed. The level of intraobserver agreement was measured by intraclass correlation. The assigned scores were evaluated by Kruskal-Wallis and Dunn's tests.ResultsThe CDR Wireless values did not differ significantly from the actual lengths and the CygnusRay MPS values. The Digora Optime system was significantly different from the others and overestimated the values (P < 0.05). The Digora Optime was significantly easier to use for taking measurements and the CygnusRay MPS the most difficult (P < 0.05). All digital radiographic imaging systems showed excellent agreement with the Intraclass Correlation Coefficient > 0.95.ConclusionsThe three digital radiographic imaging systems were precise. The CDR Wireless system was significantly more accurate in determining endodontic file lengths, and similarly to Digora Optime, was considered the least difficult to use when assessing endodontic file lengths.
Resumo:
Objectives: To compare simulated periodontal bone defect depth measured in digital radiographs with dedicated and non-dedicated software systems and to compare the depth measurements from each program with the measurements in dry mandibles.Methods: Forty periodontal bone defects were created at the proximal area of the first premolar in dry pig mandibles. Measurements of the defects were performed with a periodontal probe in the dry mandible. Periapical digital radiographs of the defects were recorded using the Schick sensor in a standardized exposure setting. All images were read using a Schick dedicated software system (CDR DICOM for Windows v.3.5), and three commonly available non-dedicated software systems (Vix Win 2000 v.1.2; Adobe Photoshop 7.0 and Image Tool 3.0). The defects were measured three times in each image and a consensus was reached among three examiners using the four software systems. The difference between the radiographic measurements was analysed using analysis of variance (ANOVA) and by comparing the measurements from each software system with the dry mandibles measurements using Student's t-test.Results: the mean values of the bone defects measured in the radiographs were 5.07 rum, 5.06 rum, 5.01 mm and 5.11 mm for CDR Digital Image and Communication in Medicine (DICOM) for Windows, Vix Win, Adobe Photoshop, and Image Tool, respectively, and 6.67 mm for the dry mandible. The means of the measurements performed in the four software systems were not significantly different, ANOVA (P = 0.958). A significant underestimation of defect depth was obtained when we compared the mean depths from each software system with the dry mandible measurements (t-test; P congruent to 0.000).Conclusions: the periodontal bone defect measurements in dedicated and in three non-dedicated software systems were not significantly different, but they all underestimated the measurements when compared with the measurements obtained in the dry mandibles.
Resumo:
Purpose: The aim of this study was to evaluate by means of digital radiography the behavior of the alveolar bone crest in external hexagon implants following the use of 2 different types of abutments, one for conventional cemented prosthesis and one for modified cemented prosthesis.Methods: Ten external hexagon implants (platform 4.1) were placed in 5 patients. Initial instrumentation was carried out to obtain primary stability of the temporary prostheses under immediate loading. Each patient received both abutments for conventional and modified cemented prosthesis. Standardized digital periapical radiographies were performed at times T0 (immediately after implant placement) and T1 (4 months after implant placement). A straight line was initially established from the implant platform to the distal and mesial periimplantar marginal bone tissue (immediately in contact with the implant) and measured by digital radiography, using Sidexis version 2.3 (Sirona Dental Systems GmbH, Bensheim, Germany) software. The data were submitted to paired-samples t-test analysis.Results: There was no significant difference between the conventional and modified cemented prosthesis. In both cases, t-test results were within the null hypothesis level.Conclusion: The abutment for the modified cemented prosthesis resulted in no significant radiographic difference of alveolar bone crest height, when compared with the conventional cemented prostheses.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Introduction: The aim of this study was to assess the occurrence of apical root transportation after the use of Pro Taper Universal rotary files sizes 3 (F3) and 4 (F4). Methods: Instruments were worked to the apex of the original canal, always by the same operator. Digital subtraction radiography images were produced in buccolingual and mesiodistal projections. A total of 25 radiographs were taken from root canals of human maxillary first molars with curvatures varying from 23-31 degrees. Quantitative data were analyzed by intraclass correlation coefficient and Wilcoxon nonparametric test (P = .05). Results: Buccolingual images revealed a significantly higher degree of apical transportation associated with F4 instruments when compared with F3 instruments in relation to the original canal (Wilcoxon test, P = .007). No significant difference was observed in mesiodistal images (P = .492). Conclusions: F3 instruments should be used with care in curved canals, and F4 instruments should be avoided in apical third preparation of curved canals. (J Endod 2010;36:1052-1055)
Resumo:
Aim: This in vitro study evaluated the accuracy of primary incisor lengths determined by digital and conventional radiography compared to the actual tooth length. Methods: Twenty extracted primary maxillary incisors were mounted in acrylic blocks. Tooth length was estimated by using a straight-line measurement provided by the distance measurement tool of a digital dental imaging system (Computed Dental Radiography, Schick Technologies Inc.) and conventional E-speed film radiographs by using a digital caliper. Two operators familiar with both radiographic methods performed the estimates. The estimated tooth lengths were compared to the actual tooth lengths measured with the digital caliper. Data were statistically analyzed by Dahlberg's equation, paired t test, Pearson's correlation coefficient and ANOVA at 5% significance level. Results: There were no statistically significant differences (p = 0.85) between tooth length estimated on digital and conventional radiographs. Admitting as clinically acceptable a 0.5-mm discrepancy between the actual tooth lengths and the radiographically estimated lengths, 60% of the radiographic measurements were considered as accurate. When the acceptable difference range was 1.0 mm, the accuracy of the radiographic measurements increased to 100%. Conclusions: Digital and conventional radiography provided similar tooth length measurements and were equivalent to the actual tooth lengths.