42 resultados para decision support systems, GIS, interpolation, multiple regression
Resumo:
An intelligent system that emulates human decision behaviour based on visual data acquisition is proposed. The approach is useful in applications where images are used to supply information to specialists who will choose suitable actions. An artificial neural classifier aids a fuzzy decision support system to deal with uncertainty and imprecision present in available information. Advantages of both techniques are exploited complementarily. As an example, this method was applied in automatic focus checking and adjustment in video monitor manufacturing. Copyright © 2005 IFAC.
Resumo:
The second main cause of death in Brazil is cancer, and according to statistics disclosed by National Cancer Institute from Brazil (INCA) 466,730 new cases of cancer are forecast for 2008. The analysis of tumour tissues of various types and patients' clinical data, genetic profiles, characteristics of diseases and epidemiological data may lead to more precise diagnoses, providing more effective treatments. In this work we present a clinical decision support system for cancer diseases, which manages a relational database containing information relating to the tumour tissue and their location in freezers, patients and medical forms. Furthermore, it is also discussed some problems encountered, as database integration and the adoption of a standard to describe topography and morphology. It is also discussed the dynamic report generation functionality, that shows data in table and graph format, according to the user's configuration. © ACM 2008.
Resumo:
The communication between user and software is a basic stage in any Interaction System project. In interactive systems, this communication is established by the means of a graphical interface, whose objective is to supply a visual representation of the main entities and functions present in the Virtual Environment. New ways of interacting in computational systems have been minimizing the gap in the relationship between man and computer, and therefore enhancing its usability. The objective of this paper, therefore, is to present a proposal for a non-conventional user interface library called ARISupport, which supplies ARToolKit applications developers with an opportunity to create simple GUI interfaces, and provides some of the functionality used in Augmented Reality systems. © Springer-Verlag Berlin Heidelberg 2005.
Resumo:
The purpose of this work was to study fragmentation of forest formations (mesophytic forest, riparian woodland and savannah vegetation (cerrado)) in a 15,774-ha study area located in the Municipal District of Botucatu in Southeastern Brazil (São Paulo State). A land use and land cover map was made from a color composition of a Landsat-5 thematic mapper (TM) image. The edge effect caused by habitat fragmentation was assessed by overlaying, on a geographic information system (GIS), the land use and land cover data with the spectral ratio. The degree of habitat fragmentation was analyzed by deriving: 1. mean patch area and perimeter; 2. patch number and density; 3. perimeter-area ratio, fractal dimension (D), and shape diversity index (SI); and 4. distance between patches and dispersion index (R). In addition, the following relationships were modeled: 1. distribution of natural vegetation patch sizes; 2. perimeter-area relationship and the number and area of natural vegetation patches; 3. edge effect caused by habitat fragmentation, the values of R indicated that savannah patches (R = 0.86) were aggregated while patches of natural vegetation as a whole (R = 1.02) were randomly dispersed in the landscape. There was a high frequency of small patches in the landscape whereas large patches were rare. In the perimeter-area relationship, there was no sign of scale distinction in the patch shapes, In the patch number-landscape area relationship, D, though apparently scale-dependent, tends to be constant as area increases. This phenomenon was correlated with the tendency to reach a constant density as the working scale was increased, on the edge effect analysis, the edge-center distance was properly estimated by a model in which the edge-center distance was considered a function of the to;al patch area and the SI. (C) 1997 Elsevier B.V. B.V.
Resumo:
Making diagnoses in oral pathology are often difficult and confusing in dental practice, especially for the lessexperienced dental student. One of the most promising areas in bioinformatics is computer-aided diagnosis, where a computer system is capable of imitating human reasoning ability and provides diagnoses with an accuracy approaching that of expert professionals. This type of system could be an alternative tool for assisting dental students to overcome the difficulties of the oral pathology learning process. This could allow students to define variables and information, important to improving the decision-making performance. However, no current open data management system has been integrated with an artificial intelligence system in a user-friendly environment. Such a system could also be used as an education tool to help students perform diagnoses. The aim of the present study was to develop and test an open case-based decisionsupport system.Methods: An open decision-support system based on Bayes' theorem connected to a relational database was developed using the C++ programming language. The software was tested in the computerisation of a surgical pathology service and in simulating the diagnosis of 43 known cases of oral bone disease. The simulation was performed after the system was initially filled with data from 401 cases of oral bone disease.Results: the system allowed the authors to construct and to manage a pathology database, and to simulate diagnoses using the variables from the database.Conclusion: Combining a relational database and an open decision-support system in the same user-friendly environment proved effective in simulating diagnoses based on information from an updated database.
Resumo:
This paper presents the construction of a fuzzy environmental quality index for decision support in municipal environmental management. Five groups of indicators were selected in order to obtain an equation that best represented reality in terms of environmental quality. The calculation was carried out using fuzzy mathematical concepts, with the aid of the package Fuzzy Logical Toolbox 2.1 for Matlab ® 6.1, which provides functions and some applications of the theory of fuzzy sets. The work seeks to create a method of inference concerning the nature of urban areas that are unsustainable with respect to the environment, an issue that is often relegated to the background during public policy discussions. The development of this index, together with its implementation and dissemination, could improve public awareness of environmental issues, and promote mobilization towards the use of best practices in local development. © 2010 IEEE.
Resumo:
Pós-graduação em Geografia - IGCE
Resumo:
Este trabalho estuda uma aplicação de um Método Multicritério (AHP do inglês Analytic Hierarchy Process) para analisar os problemas do congestionamento do tráfego aéreo nos aeroportos brasileiros, focando-se na ponte São Paulo-Rio de Janeiro. Primeiramente com um estudo em grupo mediante comparação em pares e posteriormente mediante um estudo individual com ratings. O objetivo deste trabalho será obter a alternativa mais adequada para os interesses do tráfego aéreo de Brasil
Resumo:
Pós-graduação em Engenharia de Produção - FEB
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Background: Leptospirosis is an important zoonotic disease associated with poor areas of urban settings of developing countries and early diagnosis and prompt treatment may prevent disease. Although rodents are reportedly considered the main reservoirs of leptospirosis, dogs may develop the disease, may become asymptomatic carriers and may be used as sentinels for disease epidemiology. The use of Geographical Information Systems (GIS) combined with spatial analysis techniques allows the mapping of the disease and the identification and assessment of health risk factors. Besides the use of GIS and spatial analysis, the technique of data mining, decision tree, can provide a great potential to find a pattern in the behavior of the variables that determine the occurrence of leptospirosis. The objective of the present study was to apply Geographical Information Systems and data prospection (decision tree) to evaluate the risk factors for canine leptospirosis in an area of Curitiba, PR.Materials, Methods & Results: The present study was performed on the Vila Pantanal, a urban poor community in the city of Curitiba. A total of 287 dog blood samples were randomly obtained house-by-house in a two-day sampling on January 2010. In addition, a questionnaire was applied to owners at the time of sampling. Geographical coordinates related to each household of tested dog were obtained using a Global Positioning System (GPS) for mapping the spatial distribution of reagent and non-reagent dogs to leptospirosis. For the decision tree, risk factors included results of microagglutination test (MAT) from the serum of dogs, previous disease on the household, contact with rats or other dogs, dog breed, outdoors access, feeding, trash around house or backyard, open sewer proximity and flooding. A total of 189 samples (about 2/3 of overall samples) were randomly selected for the training file and consequent decision rules. The remained 98 samples were used for the testing file. The seroprevalence showed a pattern of spatial distribution that involved all the Pantanal area, without agglomeration of reagent animals. In relation to data mining, from 189 samples used in decision tree, a total of 165 (87.3%) animal samples were correctly classified, generating a Kappa index of 0.413. A total of 154 out of 159 (96.8%) samples were considered non-reagent and were correctly classified and only 5/159 (3.2%) were wrongly identified. on the other hand, only 11 (36.7%) reagent samples were correctly classified, with 19 (63.3%) samples failing diagnosis.Discussion: The spatial distribution that involved all the Pantanal area showed that all the animals in the area are at risk of contamination by Leptospira spp. Although most samples had been classified correctly by the decision tree, a degree of difficulty of separability related to seropositive animals was observed, with only 36.7% of the samples classified correctly. This can occur due to the fact of seronegative animals number is superior to the number of seropositive ones, taking the differences in the pattern of variable behavior. The data mining helped to evaluate the most important risk factors for leptospirosis in an urban poor community of Curitiba. The variables selected by decision tree reflected the important factors about the existence of the disease (default of sewer, presence of rats and rubbish and dogs with free access to street). The analyses showed the multifactorial character of the epidemiology of canine leptospirosis.
Resumo:
Multinodal load forecasting deals with the loads of several interest nodes in an electrical network system, which is also known as bus load forecasting. To perform this demand, it is necessary a technique that is precise, trustable and has a short-time processing. This paper proposes two methodologies based on general regression neural networks for short-term multinodal load forecasting. The first individually forecast the local loads and the second forecast the global load and individually forecast the load participation factors to estimate the local loads. To design the forecasters it wasn't necessary the previous study of the local loads. Tests were made using a New Zealand distribution subsystem and the results obtained are compatible with the ones founded in the specialized literature. © 2011 IEEE.
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Factors influencing the location decisions of offices include traffic, accessibility, employment conditions, economic prospects and land-use policies. Hence tools for supporting real-estate managers and urban planners in such multidimensional decisions may be useful. Accordingly, the objective of this study is to develop a GIS-based tool to support firms who seek office accommodation within a given regional or national study area. The tool relies on a matching approach, in which a firm's characteristics (demand) on the one hand, and environmental conditions and available office spaces (supply) on the other, are analyzed separately in a first step, after which a match is sought. That is, a suitability score is obtained for every firm and for every available office space by applying some value judgments (satisfaction, utility etc.). The latter are powered by a focus on location aspects and expert knowledge about the location decisions of firms/organizations with respect to office accommodation as acquired from a group of real-estate advisers; it is stored in decision tables, and they constitute the core of the model. Apart from the delineation of choice sets for any firm seeking a location, the tool supports two additional types of queries. Firstly, it supports the more generic problem of optimally allocating firms to a set of vacant locations. Secondly, the tool allows users to find firms which meet the characteristics of any given location. Moreover, as a GIS-based tool, its results can be visualized using GIS features which, in turn, facilitate several types of analyses.