243 resultados para cyclic voltammetry (CV)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The presence of trace basic organonitrogen compounds such as quinoline and pyridine in derivative petroleum fuels plays an important role in maintaining the engines of vehicles. However, these substances can contaminate the environment and so must be controlled because most of them are potentially carcinogenic and mutagenic. For these reasons, a reliable and sensitive method was developed for the determination of basic nitrogen compounds in fuel samples such as gasoline and diesel. This method utilizes preconcentration on an ion-exchange resin (Amberlyte IR - 120 H) followed by differential pulse voltammetry (DPV) on a glassy carbon electrode. The electrochemical behavior of quinoline and pyridine as studied by cyclic voltammetry (CV) suggests that their reduction occurs via a reversible electron transfer followed by an irreversible chemical reaction. Very well resolved diffusion-controlled voltammetric peaks were obtained in dimethylformamide (DMF) with tetrabutylammonium tetrafluoroborate (TBAF(4) 0.1 mol L-1) for quinoline (-1.95 V) and pyridine (-2.52 V) vs. Ag vertical bar AgCl vertical bar KClsat reference electrode. The proposed DPV method displayed a good linear response from 0.10 to 300 mg L-1 and a limit of detection (LOD) of 5.05 and 0.25 mu g L-1 for quinoline and pyridine, respectively. Using the method of standard additions, the simultaneous determination of quinoline and pyridine in gasoline samples yielded 25.0 +/- 0.3 and 33.0 +/- 0.7 mg L-1 and in diesel samples yielded 80.3 +/- 0.2 and 131 +/- 0.4 mg L-1, respectively. Spike recoveries were 94.4 +/- 0.3% and 10 +/- 0.5% for quinoline and pyridine, respectively, in the fuel determinations. This proposed method was also compared with UV-vis spectrophotometric measurements. Results obtained for the two methods agreed well based on F and t student's tests.
Resumo:
The presence of trace neutral organonitrogen compounds as carbazole and indole in derivative petroleum fuels plays an important role in the car's engine maintenance. In addition, these substances contribute to the environmental contamination and their control is necessary because most of them are potentially carcinogenic and mutagenic. For those reasons, a reliable and sensitive method was proposed for the determination of neutral nitrogen compounds in fuel samples, such as gasoline and diesel using preconcentration with modified silica gel (Merck 70-230 mesh ASTM) followed by differential pulse voltammetry (DPV) technique on a glassy carbon electrode. The electrochemical behavior of carbazole and indole studied by cyclic voltammetry (CV) suggests that their reduction occurs via a reversible electron transfer followed by an irreversible chemical reaction. Very well resolved diffusion controlled voltammetric peaks were obtained in dimethylformamide (DMF) with tetrabutylammonium tetrafluoroborate (TBAF(4) 0.1 mol L-1) for indole (-2.27 V) and carbazole (-2.67 V) versus Ag vertical bar AgCl vertical bar KClsat reference electrode. The proposed DPV method showed a good linear response range from 0.10 to 300 mg L-1 and a limit of detection (L.O.D) of 7.48 and 2.66 mu g L-1 for indole and carbazole, respectively. The results showed that simultaneous determination of indole and carbazole presents in spiked gasoline samples were 15.8 +/- 0.3 and 64.6 +/- 0.9 mg L-1 and in spiked diesel samples were 9.29 +/- 1 and 142 +/- 1 mg L-1, respectively. The recovery was evaluated and the results shown the values of 88.9 +/- 0.4 and 90.2 +/- 0.8% for carbazole and indole in fuel determinations. The proposed method was also compared with UV-vis spectrophotometric measures and the results obtained for the two methods were in good agreement according to the F and t Student's tests. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A glassy carbon electrode chemically modified with nickel oxyhydroxide from a nickel hexacyanoferrate (NiHCF) film was used to determine glycerol in biodiesel by cyclic voltammetry. The modified electrode exhibited a linear response to glycerol concentration in the range from 0.05 to 0.35mmol L-1, and a detection limit of 0.030mmol L-1. The glycerol concentration found in the biodiesel sample was 0.156mmol L-1. The method developed in this study showed a recovery of (100.3±5.0)%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thermally sprayed HVOF coatings are increasingly being used in industrial applications where high wear and corrosion resistance are needed [1,2]. In this paper, electrochemical ac and de experiments were used in order to obtain the corrosion resistance of coated steel with different numbers of Cr3C2-NiCr layers. This work has been performed in order to determine the role of coating thickness in the corrosion behaviour of a steel protected with cermet thermally sprayed coatings. It is known that a thicker layer protects better against corrosion when a metallic coating is evaluated. But cermet coatings, such as Cr3C2-NiCr, contain higher levels of porosity and residual stresses than metallic coatings, which really could influence the corrosion resistance of the deposited layer. Electrochemical measurements, such as Open-Circuit Potential (E-Osubset of), Polarisation Resistance (RP) and Cyclic Voltammetry (CV), were performed in an aerated 3.4 NaCI media (%wt.). Electrochemical Impedance Measurements (EIS) were also done in order to obtain a mechanism that explains the corrosion process. Structural Characterisation was carried out by means of Optical and Scanning Electron Microscopes (OM, SEM) with an Energy Dispersive Spectrometry analyser (EDS). Results show that the corrosion resistance of the complete system is mainly influenced by the substrate behaviour. The application of a higher number of deposited layers did not substantially increase their anticorrosive properties. Stress generation during the spraying deposition process plays an important role in the behaviour of the coated steel against corrosion phenomena. (C) 2002 Elsevier B.V. B.V All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Electrodes of RhxTi(1-x) O-y nominal composition were prepared by thermal decomposition of the chloride or nitrate precursor salts dissolved in strongly acidic medium and applied by brush to both sides of a Tidegrees support. A systematic study of the influence of calcination temperature and time as well as oxygen flux was conducted. The coatings were characterised by SEM, EDAX, XRD, open circuit potential measurements and cyclic voltammetry (CV). Visible-ultraviolet spectrophotometry was employed to identify the chemical form of the precursor in solution while thermogravimetric analysis (TGA) was used to assess the decomposition temperature ranges. Optimisation of the coating preparation parameters showed coatings obtained from [Rh(H2O)(6)](NO3)(3) precursor dissolved in HNO3 1:2 (v/v) and fired at 430 degreesC for 2 h in a 5 1 min (-1) oxygen stream-furnished stable electrodes having the highest electrochemically active surface area. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Thermogravimetry (TG), cyclic voltammetry (CV) and other analytical techniques were used to study the reactions of mercury with Pt-30% Ir alloy. The results allowed to suggest that an electrodeposited mercury film interacts with the substrate and when subjected to heat or electrochemical removal at least four mass loss steps or five peaks appeared during the mercury desorption process. The first two steps were attributed to Hg(0) removal probably from the bulk and from the adsorbed monolayer which wets the electrode surface. These two processes are responsible for peaks D and F in the cyclic voltammograms. The last two peaks (G, H) in CV were ascribed to the intermetallic compound decomposition. In TG curves, the last two steps were attributed to the PtHg4 (third step), and PtHg2 decomposition followed by Hg removal from the subsurface. The PtHg2 was formed by an eutectoide reaction: PtHg -> PtHg2+Hg(Pt-Ir). The Hg diffused to the subsurface was not detectable by cyclic voltammetry.
Resumo:
Nanoporous iron (hydr) oxide electrodes are evaluated as phosphate sensors using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The intensity of the reduction peak current (I-cp) of the ferrihydrite working electrode is tied to phosphate concentration at low pH; however, a hematite electrode combined with the use of EIS provided reliable sensing data at multiple pH values. Nanoporous hematite working electrodes produced an impedance phase component (theta) that shifts with increasing phosphate, and, at chosen frequencies, theta values were fitted for the range 1 nM to 0.1 mM phosphate at pH 4 and pH 7 in 5 mM NaClO4.
Resumo:
Thermal spray coatings as Cr3C2-NiCr obtained by high velocity oxy-fuel spraying (HVOF) are mainly applied due to their behaviour against aggressive erosive-abrasive and corrosive atmospheres and their thermal stability at high temperatures [1]. In order to increase the corrosion protection that it offers to the substrate trying to close the interconnected pores, it is possible to apply a thermal treatment with the gun during the spraying of the coating. This treatment could be applied in different ways. One of these ways consists of spraying only a few layers of coating followed by thermal treatment and finally the spray of the rest of layers. This thermal treatment on spraying is studied related to the corrosion properties of the system. The study comprises the electrochemical characterisation of the system by open circuit potential (OC), polarisation resistance (Rp), cyclic voltammetry (CV) and impedance spectroscopy measurements (EIS). Optical and scanning electron microscopy characterisation (OM and SEM) of the top and cross-section of the system has been used in order to justify the electrochemical results.