71 resultados para covariant quantization of the superstring
Resumo:
After reviewing the Green-Schwarz superstring using the approach of Siegel, the superstring is covariantly quantized by constructing a BRST operator from the fermionic constraints and a bosonic pure spinor ghost variable. Physical massless vertex operators are constructed and, for the first time, N-point tree amplitudes are computed in a manifestly ten-dimensional super-Poincare covariant manner. Quantization can be generalized to curved supergravity backgrounds and the vertex operator for fluctuations around AdS(5) x S-5 is explicitly constructed.
Resumo:
Using pure spinors, the superstring is covariantly quantized. For the first time, massless vertex operators are constructed and scattering amplitudes are computed in a manifestly ten-dimensional super-Poincaré covariant manner. Quantizable non-linear sigma model actions are constructed for the superstring in curved backgrounds, including the AdS 5 × S 5 background with Ramond-Ramond flux.
Resumo:
After reviewing the Green-Schwarz superstring using the approach of Siegel, the superstring is covariantly quantized by constructing a BRST operator from the fermionic constraints and a bosonic pure spinor ghost variable. Physical massless vertex operators are constructed and, for the first time, N-point tree amplitudes are computed in a manifestly ten-dimensional super-Poincaré covariant manner. Quantization can be generalized to curved supergravity backgrounds and the vertex operator for fluctuations around AdS 5 x S 5 is explicitly constructed.
Resumo:
After constructing a BRST operator from the fermionic Green-Schwarz constraints and a bosonic pure spinor ghost variable, the superstring is covariantly quantized and N-point tree amplitudes are computed in a manifestly ten-dimensional super-Poincaré covariant manner. © 2004 Published by Elsevier B.V.
Resumo:
The ten-dimensional superparticle is covariantly quantized by constructing a BRST operator from the fermionic Green-Schwarz constraints and a bosonic pure spinor variable. This same method was recently used for covariantly quantizing the superstring, and it is hoped that the simpler case of the superparticle will be useful for those who want to study this quantization method. It is interesting that quantization of the superparticle action closely resembles quantization of the worldline action for Chern-Simons theory.
Resumo:
By replacing ten-dimensional pure spinors with eleven-dimensional pure spinors, the formalism recently developed for covariantly quantizing the d = 10 superparticle and superstring is extended to the d = 11 superparticle and supermembrane. In this formalism, kappa symmetry is replaced by a BRST-like invariance using the nilpotent operator Q = ∮ λ αdα where dα is the worldvolume variable corresponding to the d = 11 spacetime supersymmetric derivative and λα is an SO(10, 1) pure spinor variable satisfying λΓcλ = 0 for c = 1 to 11. Super-Poincaré covariant unintegrated and integrated supermembrane vertex operators are explicitly constructed which are in the cohomology of Q. After double-dimensional reduction of the eleventh dimension, these vertex operators are related to type-IIA superstring vertex operators where Q = QL + QR is the sum of the left and right-moving type-IIA BRST operators and the eleventh component of the pure spinor constraint, λΓ 11λ = 0, replaces the bL 0 - b R 0 constraint of the closed superstring. A conjecture is made for the computation of M-theory scattering amplitudes using these supermembrane vertex operators. © SISSA/ISAS 2002.
Resumo:
Sigma model actions are constructed for the type II superstring compactified to four-and six-dimensional curved backgrounds which can contain non-vanishing Ramond-Ramond fields. These actions are N = 2 worldsheet superconformally invariant and can be covariantly quantized preserving manifest spacetime supersymmetry. They are constructed using a hybrid Version of superstring variables which combines features of the Ramond-Neveu-Schwarz and Green-Schwarz formalisms. For the AdS(2) x S-2 and AdS(3) x S-3 backgrounds, these actions differ from the classical Green-Schwarz actions by a crucial kinetic term for the fermions. Parts of this work have been done in collaborations with M Bershadsky, T Hauer, W Siegel, C Vafa, E Witten, S Zhukov and B Zwiebach.
Resumo:
The superstring is quantized in a manner which manifestly preserves a U(5) subgroup of the (Wick-rotated) ten-dimensional super-Poincaré invariance. This description of the superstring contains critical N = 2 worldsheet superconformal invariance and is a natural covariantization of the U(4)-invariant light-cone Green-Schwarz description. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
A sigma model action with N = 2 D = 6 superspace variables is constructed for the Type II superstring compactified to six curved dimensions with Ramond - Ramond flux. The action can be quantized since the sigma model is linear when the six-dimensional space-time is flat. When the six-dimensional space-time is AdS 3 × S 3, the action reduces to one found earlier with Vafa and Witten. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The character of holomorphic functions on the space of pure spinors in 10, 11 and 12 dimensions is calculated. From this character formula, we derive in a manifestly covariant way various central charges which appear in the pure spinor formalism for the superstring. We also derive in a simple way the zero momentum cohomology of the pure spinor BRST operator for the D = 10 and D = 11 superparticle.
Resumo:
This work comprises a study upon the quantization and the renormalizability of the generalized electrodynamics of spinless charged particles (mesons), namely, the generalized scalar electrodynamics (GSQED4). The theory is quantized in the covariant framework of the Batalin-Fradkin-Vilkovisky method. Thereafter, the complete Green's functions are obtained through functional methods and a proper discussion on the theory's renormalizability is also given. Next, we present the computation and further discussion on the radiative correction at α order; and, as it turns out, an unexpected mP-dependent divergence on the mesonic sector of the theory is found. Furthermore, in order to show the effectiveness of the renormalization procedure on the present theory, we also give a diagrammatic discussion on the photon self-energy at α2 order, where we observe contributions from the meson self-energy function. Afterwards, we present the expressions of the counterterms and effective coupling of the theory, obtaining from the latter an energy range where the theory is defined by m2≤k2
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We discuss the Gupta-Bleuler quantization of the free electromagnetic field outside static black holes in the Boulware vacuum. We use a gauge which reduces to the Feynman gauge in Minkowski spacetime. We also discuss its relation with gauges used previously. Then we apply the low-energy sector of this held theory to investigate some low-energy phenomena. First, we discuss the response rate of a static charge outside the Schwarzschild black hole in four dimensions. Next, motivated by string physics, we compute the absorption cross sections of low-energy plane waves for the Schwarzschild and extreme Reissner-Nordstrom black holes in arbitrary dimensions higher than three.
Resumo:
It is proven that the pure spinor superstring in an AdS(5) x S-5 background remains conformally invariant at one loop level in the sigma model perturbation theory.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)