176 resultados para carboxy methyl cellulose
Resumo:
In this work, we synthesized a novel series of hydrogels composed of polyacrylamide (PAAm), methylcellulose (MC), and calcic montmorillonite (MMt) appropriate for the controlled release of fertilizers, where the components presented a synergistic effect, giving very high fertilizer loading in their structure. The synthesized hydrogel was characterized in relation to morphological, hydrophilic, spectroscopic, structural, thermal, and kinetic properties. After those characterizations, the application potential was verified through sorption and desorption studies of a nitrogenated fertilizer, urea (CO(NH2)2). The swelling degree results showed that the clay loading considerably reduces the water absorption capability; however, the hydrolysis process favored the urea adsorption in the hydrogel nanocomposites, increasing the load content according to the increase of the clay mass. The FTIR spectra indicated that there was incorporation of the clay with the polymeric matrix of the hydrogel and that incorporation increased the water absorption speed (indicated by the kinetic constant k). By an X-ray diffraction technique, good nanodispersion (intercalation) and exfoliation of the clay platelets in the hydrogel matrix were observed. Furthermore, the presence of the montmorillonite in the hydrogel caused the system to liberate the nutrient in a more controlled manner than that with the neat hydrogel in different pH ranges. In conclusion, excellent results were obtained for the controlled desorption of urea, highlighting the hydrolyzed hydrogels containing 50% calcic montmorillonite. This system presented the best desorption results, releasing larger amounts of nutrient and almost 200 times slower than pure urea, i.e., without hydrogel. The total values of nutrients present in the system show that this material is potentially viable for application in agriculture as a nutrient carrier vehicle. © 2013 American Chemical Society.
Thermo-sensitive chitosan-cellulose derivative hydrogels: swelling behaviour and morphologic studies
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
8-Carboxymethyl-1,6-dihydroxy-3,5-dimethoxyxanthone 8-carboxymethyl-1,5,6-trihydroxy-3-methoxyxanthone and 8-carboxy-methyl-1,3,5,6-tetrahydroxyxanthone were isolated from the capitula of Leiothrix curvifolia and Leiothrix flavescens and characterized by spectroscopic methods, mainly 1D and 2D NMR experiments, as well as by electrospray mass spectrometry. Eight known flavonoids were also isolated and they were identified by 1D and 2D NMR experiments and comparison with literature data. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Oral administration is widely accepted route for drug delivery and solid dosage forms are commonly employed. The variation of absorption profiles along the human gastrointestinal tract (GIT) and the ability to target drugs by adequate dosage forms to distinct sites is the challenge in the pharmaceutical development of solid dosage forms. AC Biosusceptometry (ACB) is a technique that deserves consideration due to its features, accuracy of results and versatility. The purpose of this work was to evaluate, by employing the AC Biosusceptometer, the rate of swelling of systems matrices consisting of hydrophilic polymer (hydroxypropyl methyl cellulose) and magnetic material. Matrices tablets were evaluated in vitro to a more detailed analysis of kinetics of swelling, in addition to the study and application of mathematical models to correlate the magnetic area variation and the water uptake. All the procedures for qualitative and quantitative analysis of digital signals as well as the magnetic images processing were performed in MatLab® (Mathworks Inc.). ACB technique proved to be useful towards estimating the swelling properties of hydrophilic matrices in vitro, showing a promising capacity for further analyses involving dissolution test and in vivo studies, supporting their innovative potential pharmaceutical applications
Resumo:
A new procedure was developed in this study, based on a system equipped with a cellulose membrane and a tetraethylenepentamine hexaacetate chelator (MD-TEPHA) for in situ characterization of the lability of metal species in aquatic systems. To this end, the DM-TEPHA system was prepared by adding TEPHA chelator to cellulose bags pre-purified with 1.0 mol L-1 of HCl and NaOH solutions. After the MD-TEPHA system was sealed, it was examined in the laboratory to evaluate the influence of complexation time (0-24 h), pH (3.0, 4.0, 5.0, 6.0 and 7.0), metal ions (Cu, Cd, Fe, Mn and Ni) and concentration of organic matter (15, 30 and 60 mg L-1) on the relative lability of metal species by TEPHA chelator. The results showed that Fe and Cu metals were complexed more slowly by TEPHA chelator in the MD-TEPHA system than were Cd, Ni and Mn in all pH used. It was also found that the pH strongly influences the process of metal complexation by the MD-TEPHA system. At all the pH levels, Cd, Mn and Ni showed greater complexation with TEPHA chelator (recovery of about 95-75%) than did Cu and Fe metals. Time also affects the lability of metal species complexed by aquatic humic substances (AHS); while Cd, Ni and Mn showed a faster kinetics, reaching equilibrium after about 100 min, and Cu and Fe approached equilibrium after 400 min. Increasing the AHS concentration decreases the lability of metal species by shifting the equilibrium to AHS-metal complexes. Our results indicate that the system under study offers an interesting alternative that can be applied to in situ experiments for differentiation of labile and inert metal species in aquatic systems. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Schistosomiasis is still an endemic disease in many regions, with 250 million people infected with Schistosoma and about 500,000 deaths per year. Praziquantel (PZQ) is the drug of choice for schistosomiasis treatment, however it is classified as Class II in the Biopharmaceutics Classification System, as its low solubility hinders its performance in biological systems. The use of cyclodextrins is a useful tool to increase the solubility and bioavailability of drugs. The aim of this work was to prepare an inclusion compound of PZQ and methyl-beta-cyclodextrin (MeCD), perform its physico-chemical characterization, and explore its in vitro cytotoxicity. SEM showed a change of the morphological characteristics of PZQ:MeCD crystals, and IR data supported this finding, with changes after interaction with MeCD including effects on the C-H of the aromatic ring, observed at 758 cm(-1). Differential scanning calorimetry measurements revealed that complexation occurred in a 1:1 molar ratio, as evidenced by the lack of a PZQ transition temperature after inclusion into the MeCD cavity. In solution, the PZQ UV spectrum profile in the presence of MeCD was comparable to the PZQ spectrum in a hydrophobic solvent. Phase solubility diagrams showed that there was a 5.5-fold increase in PZQ solubility, and were indicative of a type A(L) isotherm, that was used to determine an association constant (K(a)) of 140.8 M(-1). No cytotoxicity of the PZQ:MeCD inclusion compound was observed in tests using 3T3 cells. The results suggest that the association of PZQ with MeCD could be a good alternative for the treatment of schistosomiasis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aerial spraying of plant ripeners on sugar cane (Saccharum officinarum L.) crops causes often the contamination of neighboring areas, which subsidizes formal complaints from the neighbors. These contaminations are due to spraying taking place during inadequate environmental conditions or from technical mistakes during the application. One of the most important causes of this contamination is the susceptibility of the species being cultivated surrounding sugar cane. In order to evaluate the effects of sugar cane plant ripeners trinexapac-ethyl and sulfometuron-methyl on peanuts, cotton, potato, coffee, citrus, beans, sunflower, cassava, rubber, soybean, and grapes, eleven experiments - one for each species - were carried out from May 2009 to Jan. 2010. The field experiment was set according to a completely random design with five treatments and four replications. Just before or during flowering, a single treatment of trinexapac-ethyl at 100 or 200 g ha-1 and sulfometuron-methyl at 7.5 or 15 g ha-1 was applied to plants. A control treatment (plants not treated) for each species was part of each experiment. Trinexapac, at the doses of 100 and 200 g ha-1, showed selectivity to peanuts, cotton, potato, coffee, citrus, sunflower, cassava, rubber, soybean, and grape. At the lowest dose (100 g ha-1), it was selective for bean. Sulfometuron, at the dose of 7.5 g ha-1, was selective for peanuts and, at the two studied doses (7.5 and 15 g ha-1), it was selective for coffee, citrus, cassava, and rubber.
Resumo:
Cellulose was extracted from lignocellulosic fibers and nanocrystalline cellulose (NC) prepared by alkali treatment of the fiber, steam explosion of the mercerized fiber, bleaching of the steam exploded fiber and finally acid treatment by 5% oxalic acid followed again by steam explosion. The average length and diameter of the NC were between 200-250 nm and 4-5 nm, respectively, in a monodisperse distribution. Different concentrations of the NC (0.1, 0.5, 1.0, 1.5, 2.0 and 2.5% by weight) were dispersed non-covalently into a completely bio-based thermoplastic polyurethane (TPU) derived entirely from oleic acid. The physical properties of the TPU nanocomposites were assessed by Fourier Transform Infra-Red spectroscopy (FTIR), Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), Dynamic Mechanical Analysis (DMA) and Mechanical Properties Analysis. The nanocomposites demonstrated enhanced stress and elongation at break and improved thermal stability compared to the neat TPU. The best results were obtained with 0.5% of NC in the TPU. The elongation at break of this sample was improved from 178% to 269% and its stress at break from 29.3 to 40.5 MPa. In this and all other samples the glass transition temperature, melting temperature and crystallization behavior were essentially unaffected. This finding suggests a potential method of increasing the strength and the elongation at break of typically brittle and weak lipid-based TPUs without alteration of the other physico-chemical properties of the polymer. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Nanocellulose is the crystalline domains obtained from renewable cellulosic sources, used to increase mechanical properties and biodegrability in polymer composites. This work has been to study how high pressure defibrillation and chemical purification affect the PALF fibre morphology from micro to nanoscale. Microscopy techniques and X-ray diffraction were used to study the structure and properties of the prepared nanofibers and composites. Microscopy studies showed that the used individualization processes lead to a unique morphology of interconnected web-like structure of PALF fibers. The produced nanofibers were bundles of cellulose fibers of widths ranging between 5 and 15 nm and estimated lengths of several micrometers. Percentage yield and aspect ratio of the nanofiber obtained by this technique is found to be very high in comparison with other conventional methods. The nanocomposites were prepared by means of compression moulding, by stacking the nanocellulose fibre mats between polyurethane films. The results showed that the nanofibrils reinforced the polyurethane efficiently. The addition of 5 wt% of cellulose nanofibrils to PU increased the strength nearly 300% and the stiffness by 2600%. The developed composites were utilized to fabricate various versatile medical implants. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O bloqueio parcial das rotas onde atuam os herbicidas, com uso de baixas doses, pode ter implicações importantes, como a alteração do balanço de processos metabólicos nas plantas. Assim, foi conduzido no ano agrícola 2006/2007 um experimento em cana-soca de segundo corte na Fazenda Jurema, pertencente ao grupo COSAN, município de Barra Bonita-SP, para verificar os efeitos do glyphosate e do sulfumeturon-methyl, em subdoses, no comportamento fisiológico da cana-de-açúcar pelos níveis de clorofila e carotenoides. Os tratamentos constituíram-se da aplicação de dois herbicidas: sulfumeturon-methyl (Curavial 360 e.a. kg-1) e glyphosate (Roundup 480 i.a. kg-1), isolados e em misturas, em diferentes doses, e um tratamento controle, sem a aplicação dos herbicidas. As doses utilizadas foram: glyphosate 200 mL p.c. ha-1; glyphosate 400 mL p.c. ha -1; glyphosate 200 mL p.c. ha -1 + 10 g p.c. ha-1 de sulfumeturon-methyl; glyphosate 150 mL p.c. ha -1 + 12 g p.c. ha -1 de sulfumeturon-methyl; e sulfumeturon-methyl 20 g p.c. ha -1. O delineamento experimental utilizado foi o de blocos casualizados, com quatro repetições. As avaliações foram realizadas 15 e 30 dias após o plantio (DAP) e 30, 60, 90, 120, 150 e 180 dias após a colheita (DAC). As folhas foram cortadas padronizando-se o mesmo peso e área foliar. Para determinação do conteúdo de clorofila e carotenoides, amostras de 0,2 g de tecido foliar fresco foram preparadas e os extratos filtrados, sendo efetuadas leituras em espectrofotômetro (663 e 645 nm para clorofilas a e b, respectivamente). A aplicação de glyphosate e sulfumeturon-methyl nas maiores doses interferiu no conteúdo de carotenoides quando estes foram comparados com a testemunha. A maior dose de glyphosate diminuiu significativamente o conteúdo de clorofilas e carotenoides na cana-de-açúcar, porém esse resultado não se manteve quando a dose foi reduzida para 200 mL p.c. ha-1 . Os teores de clorofila foram inversamente proporcionais aos níveis Fe. A aplicação de sulfumeturon-methyl não interferiu nos teores de clorofila, no entanto os níveis de carotenoides se mostraram mais sensíveis e seus teores reduzidos. As alterações observadas nos níveis de clorofilas e carotenoides pela aplicação dos produtos podem afetar de maneira distinta o metabolismo da fotossíntese pela absorção e/ou conversão de energia.
Resumo:
O objetivo deste trabalho foi avaliar os teores de lignina e celulose em plantas de cana-de-açúcar após a aplicação de dois maturadores para a colheita. O experimento foi conduzido em uma área de cana-soca, cultivar SP 803280, no município de Igaraçu do Tietê/SP. O delineamento experimental utilizado foi o de blocos casualizados, com quatro repetições. Os tratamentos constituíram-se da aplicação de dois maturadores: sulfometuron-methyl (Curavial) e glyphosate (Roundup original). As doses utilizadas foram: glyphosate a 72 g e.a. ha-1; glyphosate a 144 g e.a. ha-1 ; glyphosate a 72 g e.a. ha-1 + sulfometuron methyl a 10 g p.c. ha-1; glyphosate a 108 g e.a. ha-1 + sulfometuron-methyl a 12 g p.c. ha-1; sulfometuron-methyl a 20 g p.c. ha-1; e a testemunha sem aplicação de maturadores. As análises de lignina e celulose foram realizadas pelo método lignina em detergente ácido modificado. O glyphosate e o sulfometuron-methyl alteraram os níveis de lignina no momento da colheita, e esse efeito foi observado também durante o crescimento da cana-de-açúcar (meses após a aplicação desses produtos). O glyphosate a 72 g e.a. ha-1 promoveu reduções nos teores de lignina, na colheita e durante o crescimento da cana-de-açúcar, quando comparados com os da testemunha, enquanto o sulfometuron-methyl isolado na menor dose (10 g ha-1) promoveu aumento nos teores desse biopolímero na soqueira da cana-de-açúcar.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Os herbicidas, mesmo quando usados em doses reduzidas ou utilizados como maturadores, podem alterar a morfofisiologia da planta, o que pode levar a modificações qualitativas e quantitativas na produção. O presente estudo objetivou avaliar a eficiência agronômica e os efeitos, durante o crescimento da cana-soca, da aplicação de glyphosate e sulfometuron-methyl em baixas doses. O delineamento experimental utilizado foi o de blocos casualizados, com quatro repetições. Os tratamentos foram constituídos pelos herbicidas sulfometuron-methyl e glyphosate em diferentes doses e misturas e por uma testemunha (sem aplicação dos produtos). Uma linha de plantas de cana-de-açúcar foi destinada à aferição da qualidade tecnológica, sendo estabelecido 1 m aleatório a cada época de amostragem. Os colmos coletados foram submetidos ao desponte na altura da gema apical e à desfolha; em seguida, foram encaminhados para processamento segundo a metodologia do Sistema de Pagamento de Cana pelo Teor de Sacarose (SPCTS), sendo considerados os parâmetros tecnológicos: pol cana (PCC), pureza do caldo (PUI), açúcar total recuperável (ATR) e Brix. Nas soqueiras de cana-de-açúcar, realizaram-se análises de crescimento (altura e perfilhos). As avaliações foram realizadas na pré-colheita (30 dias após aplicação dos maturadores) e 30, 60, 90, 120, 150 e 180 dias após a colheita. Os herbicidas glyphosate e sulfometuron-methyl propiciaram melhoria da qualidade tecnológica da matéria-prima,com incrementos significativos na pureza do caldo e no Brix. A aplicação dos produtos não interferiu na produtividade e no teor de açúcar. Houve efeito estimulante no perfilhamento quando se usou glyphosate na dose de 400 mL ha-1 e redução em crescimento (altura) no início do desenvolvimento da cana, porém, com o tempo, o efeito não se manteve.