175 resultados para blood lactate
Resumo:
Determinou-se, em eqüinos, o efeito do treinamento sobre as concentrações sangüíneas de lactato e plasmáticas de glicose durante exercício de intensidade progressiva em esteira rolante. Demonstrou-se que o treinamento aeróbico causou diminuição da concentração máxima de lactato e que o limiar de lactato corresponde ao ponto de inflexão da curva de glicose plasmática, confirmando esse parâmetro como indicador da capacidade aeróbica de cavalos.
Resumo:
Objective This study investigated how consumption of orange juice associated with aerobic training affected serum lipids and physical characteristics of overweight middle-aged womenMethods The experimental group consisted of 13 women who consumed 500 mL/d of orange juice and did 1 h aerobic training 3 times a week for 3 months The control group consisted of another 13 women who did the same aerobic training program but did not consume orange juiceResults At the end of the experiment the control group lost an average of 15% of fat mass (P < 0 05) and 25% of weight (P < 0 05) whereas the experimental group lost 11% of fat mass and 1 2% of weight (P < 0 05) Consumption of orange juice by the experimental group was associated with Increased dietary intake of vitamin C and folate by 126% and 61% respectively Serum LDL-C decreased 15% (P < 0 05) and HDL-C increased 18% (P < 0 05) in the experimental group but no significant change was observed in the control group Both groups improved the anaerobic threshold by 20% (P < 0 05) but blood lactate concentration decreased 27% in the experimental group compared to the 17% control group suggesting that experimental group has less muscle fatigue and better response to trainingConclusions The consumption of 500 mL/d of orange juice associated with aerobic training in overweight women decreased cardiovascular disease risk by reducing LDL-C levels and increasing HDL-C levels This association also decreased blood lactate concentration and increased anaerobic threshold showing some improvement in the physical performance (C) 2010 Elsevier B.V. All rights reserved
Resumo:
It has previously been shown that measurement of the critical speed is a non-invasive method of estimating the blood lactate response during exercise. However, its validity in children has yet to be demonstrated. The aims of this study were: (1) to verify if the critical speed determined in accordance with the protocol of Wakayoshi et al. is a non-invasive means of estimating the swimming speed equivalent to a blood lactate concentration of 4 mmol . l(-1) in children aged 10-12 years; and (2) to establish whether standard of performance has an effect on its determination. Sixteen swimmers were divided into two groups: beginners and trained. They initially completed a protocol for determination of speed equivalent to a blood lactate concentration of 4 mmol . l(-1). Later, during training sessions, maximum efforts were swum over distances of 50, 100 and 200 m for the calculation of the critical speed. The speeds equivalent to a blood lactate concentration of 4 mmol . l(-1) (beginners = 0.82 +/- 0.09 m . s(-1), trained = 1.19 +/- 0.11 m . s(-1); mean +/- s) were significantly faster than the critical speeds (beginners = 0.78 +/- 0.25 m . s(-1), trained = 1.08 +/- 0.04 m . s(-1)) in both groups. There was a high correlation between speed at a blood lactate concentration of 4 mmol . l(-1) and the critical speed for the beginners (r = 0.96, P < 0.001), but not for the trained group (r = 0.60, P > 0.05). The blood lactate concentration corresponding to the critical speed was 2.7 +/- 1.1 and 3.1 +/- 0.4 mmol . l(-1) for the beginners and trained group respectively. The percent difference between speed at a blood lactate concentration of 4 mmol . l(-1) and the critical speed was not significantly different between the two groups. At all distances studied, swimming performance was significantly faster in the trained group. Our results suggest that the critical speed underestimates swimming intensity corresponding to a blood lactate concentration of 4 mmol . l(-1) in children aged 10-12 years and that standard of performance does not affect the determination of the critical speed.
Resumo:
Tegtbur et al. [23] devised a new method able to estimate the intensity at maximal lactate steady state termed lactate minimum test. According to Billat et al. [7], no studies have yet been published on the affect of training on highest blood lactate concentration that can be maintained over time without continual blood lactate accumulation. Therefore, the aim of the present study was to verify the effect of soccer training on the running speed and the blood lactate concentration (BLC) at the lactate minimum test (Lac(min)). Thirteen Brazilian male professional soccer players, all members of the same team playing at National level, volunteered for this study. Measurements were carried out before (pre) and after (post) eight weeks of soccer training. The Lac(min) test was adapted to the procedures reported by Tegtbur et al. [23]. The running speed at the Lac(min) test was taken when the gradient of the line was zero. Differences in running speed and blood lactate concentration at the Lac(min) test before (pre) and after (post) the training program were evaluated by Student's paired t-test. The training program increased the running speed at the Lac(min) test (14.94 +/- 0.21 vs. 15.44 +/- 0.42* km(.)h(-1)) and the blood lactate concentration (5.11 +/- 2.31 vs. 6.93 +/- 1.33* mmol(.)L(-1)). The enhance in the blood lactate concentration may be explained by an increase in the lactate/H+ transport capacity of human skeletal muscle verified by other authors.
Determination of the lactate threshold and maximal blood lactate steady state intensity in aged rats
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
OBJETIVO: O objetivo deste estudo foi analisar os efeitos da corrida contínua prolongada realizada na intensidade correspondente ao início do acúmulo do lactato no sangue (OBLA) sobre o torque máximo dos extensores do joelho analisado em diferentes tipos de contração e velocidade de movimento em indivíduos ativos. MÉTODO: Oito indivíduos do gênero masculino (23,4 ± 2,1 anos; 75,8 ± 8,7 kg; 171,1 ± 4,5 cm) participaram deste estudo. Primeiramente, os sujeitos realizaram um teste incremental até a exaustão voluntária para determinar a velocidade correspondente ao OBLA. Posteriormente, os sujeitos retornaram ao laboratório em duas ocasiões, separadas por pelo menos sete dias, para realizar 5 contrações isocinéticas máximas para os extensores do joelho em duas velocidades angulares (60 e 180º.s-1) sob as condições excêntrica (PTE) e concêntrica (PTC). Uma sessão foi realizada após um período de aquecimento padronizado (5 min a 50%VO2max). A outra sessão foi realizada após uma corrida contínua no OBLA até a exaustão voluntária. Essas sessões foram executadas em ordem randômica. RESULTADOS: Houve redução significante do PTC somente a 60º.s-1 (259,0 ± 46,4 e 244,0 ± 41,4 N.m). Entretanto, a redução do PTE foi significante a 60º.s-1 (337,3 ± 43,2 e 321,7 ± 60,0 N.m) e 180º.s-1 (346,1 ± 38,0 e 319,7 ± 43,6 N.m). As reduções relativas da força após o exercício de corrida foram significantemente diferentes entre os tipos de contração somente a 180º.s-1. CONCLUSÃO: Podemos concluir que, em indivíduos ativos, a redução no torque máximo após uma corrida contínua prolongada no OBLA pode ser dependente do tipo de contração e da velocidade angular.
Resumo:
The aim of this study was to determine the effect of exercise mode on the blood lactate removal during recovery of high-intensity exercise. Nine male individuals performed the following tests in order to determine the blood lactate removal: Running - 2x200 m, the subjects ran at their maximum capacity, and rested 2 min between each bout. Swimming - 2x50 m, the subjects swam at their maximum capacity, and rested 2 min between each bout. Each test was realized on different days with three recovery modes: passive (sitting down), swimming, or running. Recovery exercise intensity was corresponding to the aerobic threshold. All recovery activities lasted 30 min. The two forms of active recovery were initiated 2 min after the end of high-intensity exercise and lasted 15 min, and were followed by 13 min of seated rest. After 1,7, 12,17, and 30 min of the end of high-intensity exercise, blood samples (25 mu l) were collected in order to determine the blood lactate concentration. By linear regression, between the logarithm of lactate concentration and its respective time of recovery, the half-time of blood lactate removal (t1/2) was determined. Time of high-intensity exercise and the lactate concentration obtained in the 1(st) min of recovery were not different between running and swimming. Passive recovery (PR) following running (R-PR=25.5+/-4.3 min) showed a t1/2 significantly higher than PR after swimming (S-PR=18.6+/-4.3 min). The t1/2 of the sequences running-running (R-R=13.0 min), running-swimming (R-S=12.9+/-3.8 min), swimming-swimming (S-S=13.2+/-2.8 min), and swimming-running (S-R=12.9+/-3.8 min) were significantly lower than the t1/2 of the R-PR and S-PR. There was no difference between the t1/2 of the sequences R-R R-S, and S-S. on the other hand the sequence S-R showed a t1/2 significantly lower than the sequences S-S and R-R. It was concluded that the two forms of active recovery determine an increase in the blood lactate removal, regardless of the mode of high-intensity exercise performed previously. Active recovery performed by the muscle groups that were not previously fatigued, can improve the blood lactate removal.
Resumo:
Introduction - the aim of this study was to analyze the validity of the critical speed (CS) to determine the speed corresponding to 4 mmol 1(-1) of blood lactate (S4) and the speed in a 30 min test (S30min) of swimmers aged 10-15 years.Synthesis of facts - CS, S4 and S30min were determined in 12 swimmers (eight boys and four girls) divided into two groups: 10-12 years and 13-15 years.Conclusion - CS was a good predictor of aerobic performance (S30min) independent of the chronological age, providing practical information about the aerobic performance state of young swimmers. (C) 2002, Editions scientifiques et medicates, Elsevier SAS. All rights reserved.
Resumo:
Aim. The objective of this study was to verify the effects of active (AR) and passive recovery (PR) after a judo match on blood lactate removal and on performance in an anaerobic intermittent task (4 bouts of upper body Wingate tests with 3-min interval between bouts; 4WT).Methods. The sample was constituted by 17 male judo players of different competitive levels: A) National (Brazil) and International medallists (n. 5). B) State (São Paulo) medallists (n. 7). Q City (São Paulo) medallists (n. 5). The subjects were submitted to: 1) a treadmill test for determination of VO2peak and velocity at anaerobic threshold (VAT); 2) body composition; 3) a 5-min judo combat, 15-min of AR or PR followed by 4WT.Results. The groups did not differ with respect to: body weight, VO2peak, VAT, body fat percentage, blood lactate after combats. No difference was observed in performance between AR and PR, despite a lower blood lactate after combat (10 and 15 min) during AR compared to PR. Groups A and B performed better in the high-intensity intermittent exercise compared to athletes with lower competitive level (C).Conclusion. The ability to maintain power output during intermittent anaerobic exercises can discriminate properly judo players of different levels. Lactate removal was improved with AR when compared to PR but AR did not improve performance in a subsequent intermittent anaerobic exercise.
Resumo:
Few studies dealing with effort intensity during swimming exercise in rats have been reported in the literature. Recently, with the use of the lactate minimum test (LMT), our group estimated the minimum blood lactate (MBL) of rats during swimming exercises. This information allowed accurate evaluation of the effort intensity developed by rats during swimming exercise. The present study was designed to evaluate the effects of swimming exercise sessions in below, equivalent and above intensities to MBL, on protein metabolism of rats. Adult (90 days) sedentary male Wistar rats were used in the present study. Mean values of MBL, in the present study, were obtained at blood concentration of 6.7 +/- 0.4 mmol/L with a load of 5% bw. The animals were sacrificed at rest (R) or immediately after a single swimming session (30 min) supporting loads below (3.5% bw), equivalent (5.0% bw) and high load (6.5% bw) to AT. Blood samples were collected each 5 min of exercise for lactate determination. Soleus muscle protein synthesis (amount of L-[C-14] fenil alanyn incorporation to protein) and breakdown (tyrosin release) rates were evaluated. Blood lactate concentrations (mmol/L) stabilized with the below (5.4 +/- 0.01) and equivalent (6.4 +/- 0.006) to MBL but increased, progressively, with the high load. There were no differences in protein synthesis (pmol/mg.h) among rest values (65.2 +/- 3.4) and after-exercise supporting the loads below (61.5 +/- 1.3) and the equivalent (60.7+/-1.7) to MBL but there was a decrease with the high load (36.6+/-2.0). Protein breakdown rates (pmol/g.h) increase after exercise supporting the loads below (227.0 +/- 6.1), equivalent (227.9 +/- 6.0) and high (363.6 +/- 7.1) to MBL in relation to the rest (214.3 +/- 6.0). The results indicate the viability of the application of LMT in studies with rats since it detected alterations imposed by exercise.
Resumo:
The objective of this study was to analyze the validity of the velocity corresponding to the onset of blood lactate accumulation (OBLA) and critical velocity (CV) to determine the maximal lactate steady state (MLSS) in soccer players. Twelve male soccer players (21.5 ± 1.0 years) performed an incremental treadmill test for the determination of OBLA. The velocity corresponding to OBLA (3.5 mM of blood lactate) was determined through linear interpolation. The subjects returned to the laboratory on 7 occasions for the determination of MLSS and CV. The MLSS was determined from 5 treadmill runs of up to 30-minute duration and defined as the highest velocity at which blood lactate did not increase by more than 1 mM between minutes 10 and 30 of the constant velocity runs. The CV was determined by 2 maximal running efforts of 1,500 and 3,000 m performed on a 400-m running track. The CV was calculated as the slope of the linear regression of distance run versus time. Analysis of variance revealed no significant differences between OBLA (13.6 ± 1.4 km·h-1) and MLSS (13.1 ± 1.2 km·h-1) and between OBLA and CV (14.4 ± 1.1 km·h-1). The CV was significantly higher than the MLSS. There was a significant correlation between MLSS and OBLA (r = 0.80), MLSS and CV (r = 0.90), and OBLA and CV (r = 0.80). We can conclude that the OBLA can be utilized in soccer players to estimate the MLSS. In this group of athletes, however, CV does not represent a sustainable steady-state exercise intensity. © 2005 National Strength & Conditioning Association.
Resumo:
A swimming periodized experimental training model in rats in which different training protocols (TP) were classified in aerobic (A) and anaerobic (AN) intensity levels. The purpose of the present study was to verify if the classification of the TP used in the periodized training experimental model presented the blood lactate concentration [La] response adequate to the aerobic and anaerobic intensities levels. Twenty three male Wistar rats were divided into three groups. Two groups of swimming training (continuous, CT, n = 7, and periodized training, PET, n = 7) rats were evaluated during 5 weeks in eight different TP (TP-1 to TP-8) through the analysis of the [La] response. The third group was the sedentary control (SC, n = 9). The TP were classified in five intensity levels, three aerobic (A-1, A-2, A-3) and two anaerobic (AN-1, AN-2). Analysis of variance (ANOVA one-way, P<0.05) indicated significant differences in the [La] among the TP and among the five intensity levels. All TP of the A-2 and A-3 intensity levels differed from the A-1 and AN-1. The A-1 and AN-1 also differed among them. These findings demonstrate that the TP were classified properly at different levels of aerobic and anaerobic intensities, as based on the [La] response in a way similar to that of high performance swimming with humans. The results offer new perspectives for the study of exercise training in swimming rats at different levels intensity for performance or for health.