89 resultados para biological systems
Resumo:
The capacitor placement problem for radial distribution networks aims to determine capacitor types, sizes, locations and control scheme. This is a combinatorial problem that can be formulated as a mixed integer nonlinear program. The paper presents an algorithm inspired in artificial immune systems and developed for this specific problem. A good performance was obtained through experimental tests applied to known systems. © 2006 IEEE.
Resumo:
We investigate, from a philosophical perspective, the relation between abductive reasoning and information in the context of biological systems. Emphasis is given to the organizational role played by abductive reasoning in practical activities of embodied embedded agency that involve meaningful information. From this perspective, meaningful information is provisionally characterized as a selforganizing process of pattern generation that constrains coherent action. We argue that this process can be considered as a part of evolutionarily developed learning abilities of organisms in order to help with their survival. We investigate the case of inorganic mechanical systems (like robots), which deal only with stable forms of habits, rather than with evolving learning abilities. Some difficulties are considered concerning the hypothesis that mechanical systems may operate with meaningful information, present in abductive reasoning. Finally, an example of hypotheses creation in the domain of medical sciences is presented in order to illustrate the complexity of abduction in practical reasoning concerning human activities. © 2007 Springer-Verlag Berlin Heidelberg.
Resumo:
When searching for prospective novel peptides, it is difficult to determine the biological activity of a peptide based only on its sequence. The trial and error approach is generally laborious, expensive and time consuming due to the large number of different experimental setups required to cover a reasonable number of biological assays. To simulate a virtual model for Hymenoptera insects, 166 peptides were selected from the venoms and hemolymphs of wasps, bees and ants and applied to a mathematical model of multivariate analysis, with nine different chemometric components: GRAVY, aliphaticity index, number of disulfide bonds, total residues, net charge, pI value, Boman index, percentage of alpha helix, and flexibility prediction. Principal component analysis (PCA) with non-linear iterative projections by alternating least-squares (NIPALS) algorithm was performed, without including any information about the biological activity of the peptides. This analysis permitted the grouping of peptides in a way that strongly correlated to the biological function of the peptides. Six different groupings were observed, which seemed to correspond to the following groups: chemotactic peptides, mastoparans, tachykinins, kinins, antibiotic peptides, and a group of long peptides with one or two disulfide bonds and with biological activities that are not yet clearly defined. The partial overlap between the mastoparans group and the chemotactic peptides, tachykinins, kinins and antibiotic peptides in the PCA score plot may be used to explain the frequent reports in the literature about the multifunctionality of some of these peptides. The mathematical model used in the present investigation can be used to predict the biological activities of novel peptides in this system, and it may also be easily applied to other biological systems. © 2011 Elsevier Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Local anesthetic agents cause temporary blockade of nerve impulses productiong insensitivity to painful stimuli in the area supplied by that nerve. Bupivacaine (BVC) is an amide-type local anesthetic widely used in surgery and obstetrics for sustained peripheral and central nerve blockade. in this study, we prepared and characterized nanosphere formulations containing BVC. To achieve these goals, BVC loaded poly(DL-lactide-co-glycolide) (PLGA) nanospheres (NS) were prepared by nanopreciptation and characterized with regard to size distribution, drug loading and cytotoxicity assays. The 2(3-1) factorial experimental design was used to study the influence of three different independent variables on nanoparticle drug loading. BVC was assayed by HPLC, the particle size and zeta potential were determined by dynamic light scattering. BVC was determined using a combined ultrafiltration-centrifugation technique. The results of optimized formulations showed a narrow size distribution with a polydispersivity of 0.05%, an average diameter of 236.7 +/- 2.6 nm and the zeta potential -2.93 +/- 1,10 mV. In toxicity studies with fibroblast 3T3 cells, BVC loaded-PLGA-NS increased cell viability, in comparison with the effect produced by free BVC. In this way, BVC-loaded PLGA-NS decreased BVC toxicity. The development of BVC formulations in carriers such as nanospheres could offer the possibility of controlling drug delivery in biological systems, prolonging the anesthetic effect and reducing toxicity.
Resumo:
Schistosomiasis is still an endemic disease in many regions, with 250 million people infected with Schistosoma and about 500,000 deaths per year. Praziquantel (PZQ) is the drug of choice for schistosomiasis treatment, however it is classified as Class II in the Biopharmaceutics Classification System, as its low solubility hinders its performance in biological systems. The use of cyclodextrins is a useful tool to increase the solubility and bioavailability of drugs. The aim of this work was to prepare an inclusion compound of PZQ and methyl-beta-cyclodextrin (MeCD), perform its physico-chemical characterization, and explore its in vitro cytotoxicity. SEM showed a change of the morphological characteristics of PZQ:MeCD crystals, and IR data supported this finding, with changes after interaction with MeCD including effects on the C-H of the aromatic ring, observed at 758 cm(-1). Differential scanning calorimetry measurements revealed that complexation occurred in a 1:1 molar ratio, as evidenced by the lack of a PZQ transition temperature after inclusion into the MeCD cavity. In solution, the PZQ UV spectrum profile in the presence of MeCD was comparable to the PZQ spectrum in a hydrophobic solvent. Phase solubility diagrams showed that there was a 5.5-fold increase in PZQ solubility, and were indicative of a type A(L) isotherm, that was used to determine an association constant (K(a)) of 140.8 M(-1). No cytotoxicity of the PZQ:MeCD inclusion compound was observed in tests using 3T3 cells. The results suggest that the association of PZQ with MeCD could be a good alternative for the treatment of schistosomiasis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Os últimos vinte anos caracterizaram-se pela proliferação de tecnologias que tornaram possível decifrar o genoma das espécies, localizar e identificar particularidades na sua seqüência, elucidar as suas funções dentro dos sistemas biológicos e, sobretudo, começar a entender os mecanismos que controlam as interações entre os genótipos e os estímulos ambientais, que são responsáveis pela diversidade fenotípica. Estes estudos sobre as bases moleculares da variabilidade fenotípica abriram uma nova abordagem científica, caracterizada pela multiplicidade das questões envolvidas, que resultou no surgimento de novas áreas de pesquisa, cujos conhecimentos estão sendo aplicados em diversos campos da biologia, inclusive na zootecnia. Tendo em vista o grande impacto que tais conhecimentos estão tendo sobre a compreensão dos fenômenos biológicos, parece ser oportuno fazer uma avaliação das potencialidades de aplicação das abordagens de Genômica Funcional em pesquisas de nutrição e alimentação de ruminantes. Nesse contexto, este artigo está focado na descrição das principais ferramentas genômicas disponíveis e na discussão sobre a viabilidade de se utilizar as informações por elas geradas em benefício da produção animal.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A number of attempts have been made to obtain a clear definition of biological stress. However, in spite of the efforts, some controversies on the concept of plant stress remain. The current versions are centered either on the cause (stress factor) or on the effect (stress response) of environmental stress. The objective of this study was to contribute to the definition of stress, using a hierarchical approach. Thus, we have performed an analysis of the most usual stress concepts and tested the relevance of considering different observation scales in a study on plant response to water deficit. Seedlings of Eucalyptus grandis were grown in vitro at water potentials ranging from -0.16 to -0.6 MPa, and evaluated according to growth and biochemical parameters. Data were analyzed through principal component analysis (PCA), which pointed to a hierarchical organization in plant responses to environmental disturbances. Growth parameters (height and dry weight) are more sensitive to water deficit than biochemical ones (sugars, proline, and protein), suggesting that higher hierarchical levels were more sensitive to environmental constraints than lower hierarchical ones. We suggest that before considering an environmental fluctuation as stressful, it is necessary to take into account different levels of plant response, and that the evaluation of the effects of environmental disturbances on an organism depends on the observation scale being used. Hence, a more appropriate stress concept should consider the hierarchical organization of the biological systems, not only for a more adequate theoretical approach, but also for the improvement of practical studies on plants under stress.
Resumo:
Langmuir-Blodgett (LB) films from a ruthenium complex, mer-[RuCl3(dppb)(py)] (dppb = PPh2(CH2)(4)PPh2; py = pyridine) (Rupy), and from mixtures with varied amounts of polyaniline (PANi) were fabricated. Molecular-level interactions between the two components are investigated by surface potential, dc conductivity and Raman spectroscopy measurements, particularly for the mixed film with 10% of Rupy. For the latter, the better miscibility led to an interaction with Rupy inducing a decrease in the conducting state of PANi, as observed in the Raman spectra and conductivity measurement. The interaction causes the final film properties to depend on the concentration of Rupy, and this was exploited to produce a sensor array made up of sensing units consisting of 11-layer LB films from pure PANi, pure Rupy and mixtures with 10 and 30% of Rupy. It is shown that the combination of only four non-specific sensing units allows one to distinguish the basic tastes detected by biological systems, viz. saltiness, sweetness, sourness and bitterness, at the muM level. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
A model for optimal chemical control of leaf area damaged by fungi population - Parameter dependence
Resumo:
We present a model to study a fungi population submitted to chemical control, incorporating the fungicide application directly into the model. From that, we obtain an optimal control strategy that minimizes both the fungicide application (cost) and leaf area damaged by fungi population during the interval between the moment when the disease is detected (t = 0) and the time of harvest (t = t(f)). Initially, the parameters of the model are considered constant. Later, we consider the apparent infection rate depending on the time (and the temperature) and do some simulations to illustrate and to compare with the constant case.