127 resultados para austenitic steels
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
High chromium content is responsible for the formation of a protective passive surface layer on austenitic stainless steels (ASS). Due to their larger amounts of chromium, superaustenitic stainless steels (SASS) can be chosen for applications with higher corrosion resistance requirements. However, both of them present low hardness and wear resistance that has limited their use for mechanical parts fabrication. Plasma nitriding is a very effective surface treatment for producing harder and wear resistant surface layers on these steel grades, without harming their corrosion resistance if low processing temperatures are employed. In this work UNS S31600 and UNS S31254 SASS samples were plasma nitrided in temperatures from 400 °C to 500 °C for 5 h with 80% H 2-20% N2 atmosphere at 600Pa. Nitrided layers were analyzed by optical (OM) and transmission electron microscopy (TEM), x-ray diffraction (XRD), and Vickers microhardness testing. Observations made by optical microscopy showed that N-rich layers were uniform but their thicknesses increased with higher nitriding temperatures. XRD analyses showed that lower temperature layers are mainly composed by expanded austenite, a metastable nitrogen supersaturated phase with excellent corrosion and tribological properties. Samples nitrided at 400 °C produced a 5 μm thick expanded austenite layer. The nitrided layer reached 25 lm in specimens treated at 500 °C. There are indications that other phases are formed during higher temperature nitriding but XRD analysis was not able to determine that phases are iron and/or chromium nitrides, which are responsible for increasing hardness from 850 up to 1100 HV. In fact, observations made by TEM have indicated that formation of fine nitrides, virtually not identified by XRD technique, can begin at lower temperatures and their growth is affected by both thermodynamical and kinetics reasons. Copyright © 2012 by ASTM International.
Microstructural and electrochemical characterization of friction stir welded duplex stainless steels
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The purpose of this work is to explain the concept of cutting fluids reasonable usage through the fluid minimum quantity in grinding processes. on that purpose, the development of a new nozzle and an own and adequate methodology should be required in order to obtain good results and compare them to the conventional methods. The analysis of the grinding wheel/cutting fluid performance was accomplished from the following input parameters: flow rate variation by nozzle diameter changes (three diameters values: 3mm, 4mm and 5mm), besides the conventional round nozzle already within the machine. Integral oil and a synthetic emulsion were used as cutting fluids and a conventional grinding wheel was employed. The workpieces were made of steel VC 131, tempered and quenched with 60HRc. Thus, as the flow rate and the nozzle diameter changes, keeping steady fluid jet velocity (equal to cutting velocity), attempted to find the best machining conditions, with the purpose to obtain a decrease on the cutting fluid volume, taking into consideration the analysis of the process output variables such as cutting strength, cutting specific energy, grinding wheel wear and surface roughness. It was verified that the 3mm diameter optimized nozzle and the integral oil, in general, was the best combination among all proposed.
Resumo:
The world tendency is the increase of the productivity and the production of pieces more and more sophisticated, with high degree of geometric and dimensional tolerances, with good surface finish and low cost. Rectification is responsible for the final finish in the machining process of a material. However, damages generated in this production phase affect all the resources used in the previous processes. Great part of the problems happennig in the rectification process is due to the enormous temperature generated in this activity because of the machining conditions. The dive speed, which is directly related to the productivity, is considered responsible for the damages that occur during rectification, limiting its values to those that do not cause such damages. In this work, through the variation of the dive speed in the process of cylindrical grinding of type ABNT D6 steel, rationalizing the application of two cutting fluids and using a CBN (cubic boron nitrate) abrasive wheel with vitrified blond, the influence of the dive speed on the surface damages of hardened steels was evaluated. The results allowed to say that the dive speed, associated to an efficient cooling and lubrication, didn't provoke thermal damages (including heated zones, cracks and tension stresses) to the material. Residual stresses and the roughness of rectified materials presented a correlation with the machining conditions. The work concluded that it is possible to increase the productivity without provoking damages in the rectified components.
Resumo:
Microhardness measurements were carried out in a low carbon lamination steel after 6% of temper rolling, in order to evaluate local variations of work hardening as a function of crystallographic orientation. EBSD (electron back scattered diffraction) was used to determine grain orientations with respect to individual rolling planes and rolling directions. Hardness was shown to increase with the local Taylor factor. TEM observations and a well-known dislocation hardening model were used to confirm the equivalence between hardness values and the stored energy of cold work. A definite correlation between stored energy and Taylor factors could therefore be established, being more consistent than previous data reported in the literature. The improvement was thought to be related to the rather small plastic deformation, during which Taylor factors could be considered to remain constant. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O artigo teve como objetivo estudar a evolução do crescimento, distribuição e classificação dos pites em aços inoxidáveis austeníticos AISI 310S no estado como recebida e tratado termicamente, submetidos a diferentes tempos de exposição em meio salino. A aplicabilidade deste trabalho baseou-se no desenvolvimento de uma técnica para caracterização morfológica da corrosão localizada, associado com os aspectos de descrição de formas, tamanho, parâmetros específicos e populacionais. A metodologia consistiu nas seguintes etapas: preparação dos corpos de prova, testes de corrosão via névoa salina em diferentes condições, análise microestrutural, análise dos perfis dos pites, processamento digital e análise de imagens, visando caracterizar a distribuição, morfologia e o tamanho dos pites. Os resultados obtidos no processamento digital e análise de imagens dos perfis foram submetidos á análise estatística, utilizando à mediana como parâmetro de avaliação na liga como recebido e tratada. A liga como recebido, exibe a seguinte morfologia: pites hemisféricos> região de transição A> região de transição B> irregulares> cônicos. A quantidade de pites na liga tratada a cada tempo de exposição é: região de transição B> hemisféricos> região de transição A> cônicos> irregulares.
Resumo:
An investigation has been conducted to examine the morphological influence on fatigue life of low carbon steel with dual phase microstructure. The results showed that dual-phase microstructure, composed by ferrite and martensite had superior symmetrical bending fatigue strength when compared with ferrite-pearlite steel. Through those tests, evidences of different mechanisms were verified (such as ferrite cyclic hardening, slip band formation and beginning of crack nucleation and propagation). Based on the fatigue tests results, various mechanisms stages were discussed associated with different microstructure morphology. Copyright (C) 1996 Published by Elsevier B.V. Limited.
Resumo:
The precipitation behaviour of a nickel free stainless steel containing 25% chromium, 17% manganese and 0.54% nitrogen, with duplex ferritic-austenitic microstructure, was studied using several complementary techniques of microstructural analysis after aging heat treatments between 600 and 1 000 degrees C for periods of lime between 15 and 6 000 min. During aging heat treatments, ferrite was decomposed into sigma phase and austenite by a eutectoid reaction, like in the Fe-Cr-Ni duplex stainless steel. Chromium nitride precipitation occurred in austenite, which had a high nitrogen supersaturation. Some peculiar aspects were observed in this austenite during its phase transformations. Chromium nitride precipitation occurred discontinuously in a lamellar morphology, such as pearlite in carbon steels. This kind of precipitation is not an ordinary observation in duplex stainless steels and the high levels of nitrogen in austenite can induce this type of precipitation, which has not been previously reported in duplex stainless steels. After chromium nitride precipitation in austenite, it was also observed sigma phase formation near the cells or colonies of discontinuously precipitated chromium nitride. Sigma phase formation was made possible by the depletion of nitrogen in those regions. Time-temperature-transformation (precipitation) diagrams were determined.
Resumo:
The present work shows an experimental and theoretical study on heat flow when end milling, at high-speed, hardened steels applied to moulds and dies. AISI H13 and AISI D2 steels were machined with two types of ball nose end mills: coated with (TiAl)N and tipped with PcBN. The workpiece geometry was designed to simulate tool-workpiece interaction in real situations found in mould industries, in which complex surfaces and thin walls are commonly machined. The compressed and cold air cooling systems were compared to dry machining Results indicated a relatively small temperature variation, with higher range when machining AISI D2 with PcBN-tipped end mill. All cooling systems used demonstrated good capacity to remove heat from the machined surface, especially the cold air. Compressed air was the most indicated to keep workpiece at relatively stable temperature. A theoretical model was also proposed to estimate the energy transferred to the workpiece (Q) and the average convection coefficient ((h) over bar) for the cooling systems used. The model used a FEM simulation and a steepest decent method to find the best values for both variables. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work is to propose a flow spectrophotometric procedure for manganese determination in steel based on electrochemical oxidation of Mn(II) to Mn(VII) at a Pt electrode surface by means of the catalytic effect of Ag(I). The on-line oxidation step was obtained by injecting sample and electrolyte solution directly into an electrolytic cell. After electrolysis, the injectate was homogenized by bubbling air. The permanganate ions produced were passed through the spectrophotometer where absorbance was monitored at 545 nm. Effects of direct current, silver concentration, timing, flow rates, concentration and composition of support electrolyte were investigated. Direct current and silver content manifested themselves as the most relevant parameters. For determination of manganese in the 5.00 - 150 mg L -1 range (r=0,9998) and 60 s electrolysis time, the sample throughput was 20 h -1. Accuracy was assessed by analyzing ten steel standard reference materials. Results are precise (R.S.D. <3%) and in agreement with certified values of reference materials and with standard methods at 95% confidence level.
Resumo:
Dual phase steels, characterised by good formability and excellent surface finish, are suitable for applications where processing involves cold deformation. In this context an investigation has been conducted into the cold deformation aging susceptibility of carbon steel API-5L-B and microalloyed steel API-5L-X52, both with dual phase microstructures. Changes in mechanical properties such as phase microhardness, ultimate tensile strength, and yield strength in both types of steel were observed at aging temperatures of 25, 80, and 150°C. This aging is associated with dislocation structures formed on ferrite grains in the vicinity of ferrite/martensite interfaces during intercritical treatments, which become preferential sites for solute atom diffusion. © 1999 IoM Communications Ltd.
Resumo:
In this work five methods of heat treatments are investigated in order to obtained convenient volume fractions of ferrite, bainite, martensite and retained austenite, starting with a low carbon steel and seeking the distinction of the phases, through optical microscopy. Specific chemical etching is improved. The results in tensile and fatigue tests were accomplished and the results were related with the microstructural parameters. The results show that the mechanical properties are closely related with the phases, grains size and the phases morphology. Copyright © 2001 Society of Automotive Engineers, Inc.