81 resultados para androgen receptor signalling
Resumo:
The normal growth, differentiation and maintenance of the morphofunctional integrity of the prostate gland are dependent on the interaction of constant levels of androgens with their receptors. The need to study the responses to hormones under several conditions and the effect of their blockage is due to the fact that the human prostate is the site of a great number of age-related diseases, and the ones with a major medical importance are prostate cancer (Cap) and benign prostatic hyperplasia (BPH), which can both be treated with androgen suppression. Seventy-five male gerbils were divided, randomly, into 3 groups of 25 animals each, where each group corresponded to one phase of postnatal development. In each phase, it was possible to morphologically and stereologically analyze the compartments of prostatic ventral lobe, as well as to immunohistochemically analyze the degree of expression of androgen receptors (ARs) after the androgen blockage therapies. In addition, it was possible to establish the hormonal dosage of serum testosterone levels given the comparative approach of the expression of androgen receptors. There is a pattern of AR distribution in the prostatic ventral lobe throughout postnatal development, in which the younger the animal is the higher, the interaction of circulating androgens that stimulate the AR expression in both the epithelial and stromal compartments. The androgen blockage therapies decreased AR expression in the prostatic compartments, but the androgen reposition after these blockages was not sufficient to recover the glandular structure or stimulate the AR expression up to normal physiological conditions. Both the regulation and distribution of androgen receptors along the gerbil prostatic tissues are complex mechanisms that are likely to be genetically regulated by androgens prenatally or by other factors that are still unknown. This rodent species seems to be a valuable model in the attempt to improve the understanding of the morphophysiological and pathological behavior of this important gland in humans throughout aging and to stimulate new therapeutic ideas to fight prostate cancer. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The observation that mice with a selective ablation of the androgen receptor (AR) in Sertoli cells (SC) (SCARKO mice) display a complete block in meiosis supports the contention that SC play a pivotal role in the control of germ cell development by androgens. To delineate the physiological and molecular mechanism responsible for this control, we compared tubular development in pubertal SCARKO mice and littermate controls. Particular attention was paid to differences in SC maturation, SC barrier formation and cytoskeletal organization and to the molecular mediators potentially involved. Functional analysis of SC barrier development by hypertonic perfusion and lanthanum permeation techniques and immunohistochemical analysis of junction formation showed that SCARKO mice still attempt to produce a barrier separating basal and adluminal compartment but that barrier formation is delayed and defective. Defective barrier formation was accompanied by disturbances in SC nuclear maturation (immature shape, absence of prominent, tripartite nucleoli) and SC polarization (aberrant positioning of SC nuclei and cytoskeletal elements such as vimentin). Quantitative RT-PCR was used to study the transcript levels of genes potentially related to the described phenomena between day 8 and 35. Differences in the expression of SC genes known to play a role in junction formation could be shown from day 8 for Cldn11, from day 15 for Cldn3 and Espn, from day 20 for Cdh2 and Jam3 and from day 35 for ZO-1. Marked differences were also noted in the transcript levels of several genes that are also related to cell adhesion and cytoskeletal dynamics but that have not yet been studied in SC (Actn3, Ank3, Anxa9, Scin, Emb, Mpzl2). It is concluded that absence of a functional AR in SC impedes the remodeling of testicular tubules expected at the onset of spermatogenesis and interferes with the creation of the specific environment needed for germ cell development.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Exposure to environmental chemicals may contribute to reproductive disorders, especially when it occurs in critical periods of development. The female reproductive system can be a target for androgens derived from environmental contaminants or pathological conditions. The purpose of this study was to assess the long-term effects of androgens on uterine tissue after maternal exposure limited to the time of gestation and lactation. Pregnant Wistar rats were treated with testosterone propionate (TP) at 0.05. mg/kg, 0.1. mg/kg, 0.2. mg/kg or corn oil (vehicle), s.c., from gestational day 12 until the end of lactation. The results show changes in the pattern of expression of receptors for estrogen, progesterone, and androgen at all doses tested, and decreases in both apoptosis and cell proliferation indices at 0.1 and 0.2. mg/kg. We conclude that early TP exposure, under these experimental conditions, causes changes in cellular and molecular parameters that are essential for normal uterine function in the adult. © 2013 Elsevier Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Few studies have focused on experimental testosterone deprivation in immature animals. Therefore, this study used sexually immature rats aiming to evaluate the testes and epididymis histology and proteins expression in these organs on PND50 and 75, after premature antiandrogen exposure, from PND21 to 44. Although the androgen deprivation from pre-puberty up to peripuberty did not alter the histological organization of the testes and epididymis either at puberty or at adulthood, the treatment impaired the expression of specific proteins in epididymal tissue at puberty and adulthood (androgen receptor, calmodulin, Rab11A). These changes may be related to impaired epididymal function, sperm quality and fertility capacity as observed in a previous study. Further studies are necessary to better investigate the molecular mechanisms involved in the impairment on reproductive competence of male rats after precocious hormonal injury. © 2013 Elsevier Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)