64 resultados para active layer morphology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to evaluate the effect of Er:YAG (L) and diamond drills (DD) on: 1) the microshear bond strength (MPa); 2) the adhesive interface of two-step (TS) – Adper Scotchbond Multipurpose and one-step (OS) adhesives – Adper EasyOne, both from 3M ESPE. Material and methods: According to the preparation condition and adhesives, the samples were divided into four groups: DD_TS (control); DD_OS; L_TS and L_OS. 60 bovine incisors were randomly divided into experimental and groups: 40 for microshear bond strength (n = 10) and 20 for the adhesive interface morphology [6 to measure the thickness of the hybrid layer (HL) and length of tags (t) by CLSM (n = 3); 12 to the adhesive interface morphology by SEM (n = 3) and 2 to illustrate the effect of the instruments on dentine by SEM (n = 1)]. To conduct the microshear bond strength test, four cylinders (0.7 mm in diameter and 1 mm in height with area of adhesion of 0.38 mm) were constructed with resin composite (Filtek Z350 XT – 3M ESPE) on each dentin surface treated by either L or DD and after adhesives application. Microshear bond strength was performed in universal testing machine (EMIC 2000) with load cell of 500 kgf and a crosshead speed of 0.5 mm / min. Adhesive interface was characterized by thickness of hybrid layer (HL) and length of tags (t) in nm, with the aid of UTHSCSA ImageTool software. Results: Microshear bond strength values were: L_TS 34.10 ± 19.07, DD_TS 24.26 ± 9.35, L_OS 33.18 ± 12.46, DD_OS 21.24 ± 13.96. Two-way ANOVA resulted in statistically significant differences only for instruments (p = 0.047). Mann-Whitney identified the instruments which determined significant differences for HL thickness and tag length (t). Concerning to the adhesive types, these differences were only observed for (t). Conclusion: It can be concluded that 1) laser Er:YAG results in higher microshear bond strength values regardless of the adhesive system (TS and OS); 2) the tags did not significant affect the microshear bond strength; 3) the adhesive interface was affected by both the instruments for cavity preparation and the type of adhesive system used.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conjugated polymers have been subject of great interest in the recent literature from both fundamental point of view and applied science perspective. Among the several types of conjugated polymers used in recent investigations, polythiophene and its derivatives have attracted considerable attention over the past 20 years due to their high mobility and other remarkable solid-state properties. They have potential applications in many fields, such as microelectronic devices, catalysts, organic field-effect transistors, chemical sensors, and biosensors. They have been studied as gas and volatile organic compounds (VOCs) sensors using different principles or transduction techniques, such as optical absorption, conductivity, and capacitance measurements. In this work, we report on the fabrication of gas sensors based on a conducting polymer on an interdigitated gold electrode. We use as active layer of the sensor a polythiophene derivative: poly (3-hexylthiophene) (P3HT) and analyzed its conductivity as response for exposure to dynamic flow of saturated vapors of six VOCs [n-hexane, toluene, chloroform, dichloromethane, methanol, and tetrahydrofuran (THE)]. Different responses were obtained upon exposure to all VOCs, THF gave the higher response while methanol the lower response. The influence of moisture on the measurements was also evaluated. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyfluorenes are promising materials for the emitting layer of polymer light emitting devices (PLEDs) with blue emission. In this work, we report on PLEDs fabricated with Langmuir-Blodgett (LB) films of a polyfluorene derivative, namely poly(9,9-di-hexylfluorenediyl vinylene-alt-1,4-phenylenevinylene) (PDHF-PV). Y-type LB films were transferred onto ITO substrates at a surface pressure of 35 mN m-1 and with dipping speed of 3 mm min -1. A thin aluminum layer was evaporated on top of the LB film, thus yielding a sandwich structure (ITO/PDHF-PV(LB)/Al). Current-voltage (I vs V) measurements indicate that the device displays a classical behavior of a rectifying diode. The threshold value is approximately 5 V, and the onset for visible light emission occurs at ca. 10 V. From the a.c. electrical responses we infer that the active layer has a typical behavior of PLEDs where the real component of ac conductivity obeys a power-law with the frequency. Cole-Cole plots (Im(Z) vs. Re(Z)) for the device exhibit a series of semicircles, the diameter of which decreases with increasing forward bias. This PLED structure is modeled by a parallel resistance and capacitance combination, representing the dominant mechanisms of charge transport and polarization in the organic layer, in series with a resistance representing the ITO contact. Overall, the results presented here demonstrate the feasibility of LEDs made with LB films of PDHF-PV.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The widespread use of poly(3-hexylthiophene) (P3HT) in the active layers of organic solar cells indicates that it possesses chemical stability and solubility suitable for such an application. However, it would be desirable to have a material that can maintain these properties but with a smaller bandgap, which would lead to more efficient energy harvesting of the solar spectrum. Fifteen P3HT derivatives were studied using the Density Functional Theory. The conclusion is that it is possible to obtain compounds with significantly smaller bandgaps and with solubility and stability similar to that of P3HT, mostly through the binding of oxygen atoms or conjugated organic groups to the thiophenic ring. © 2013 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Usually organic polymeric diodes are made with a semiconductor layer placed between two electrodes in a sandwich-like architecture, where the electrodes are deposited on the surfaces of a polymeric semiconductor film. This methodology leads to two main problems: i) the polymeric film top surface is rough and irregular, resulting in non-uniform electric field into the device; ii) during the deposition of metallic electrode in the top surface polymeric film, by thermal evaporation, occurs the diffusion of metal atoms into the polymeric film, changing the material electronic structure. Thus, the metal-semiconductor junction is not well defined, which is essential for the production of good quality Schottky diode, which exhibits ideality factor close to the unity and low turn-on voltage. In order to avoid these two problems, in the present research was proposed to manufacture an organic diode with the semiconductor polymeric layer deposited over bimetallic (gold and aluminum) interdigitated electrodes. The doping of the active layer was performed by immersing the device in hydrochloric acid solution with pH 2 during different times in order to promote different doping levels of the semiconductor polymer. Was verified that the proposed diode, which exhibits well-defined metal-semiconductor junction, operates as a Schottky diode, with good ideality factor, 10 ± 3, and low turn-on voltage, 1,2 ± 0,2 V, in comparison with conventional organic polymeric diodes. Contrasting with the ideality factor and turn-on voltage, the diode rectification ratio was obtained as 7, a value lower than the expected for a good organic diode. Was also showed that the diode characteristics were dependent on the semiconductor polymer doping level, and that the diode characteristics were optimized with doping promoted by immersion in the acid solution for times longer than 50 s. Furthermore, as was showed that the diodes properties are dependent on the semiconductor...

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dynamic scale theory and fractal concepts are employed in the characterization of surface morphological properties of layer-by-layer (LBL) films from poly(o-methoxyaniline) (POMA) alternated with poly(vinyl sulfonic acid) (PVS). The fractal dimensions are found to depend on the procedures to fabricate the POMA/PVS multilayers, particularly with regard to the drying procedures. LBL films obtained via drying in ambient air show a more homogeneous surface, compared to films dried under vacuum or a flow of nitrogen, due to a uniform rearrangement of polymer molecules during solvent evaporation.