87 resultados para Wastepaper sludge ash
Resumo:
The processing of industry and domestic effluents in wastewater treatment plants reduces the amount of polluted material and forms reusable water and dehydrated sludge. the generation of hazardous municipal sludge can be decreased, as well as the impact on surface and underground water and the risk to human health. The aim this study is to verify the possibility to use sintered sewage sludge as support material after thermal treatment in the production of a filtering material to water supply systems. After thermal treatment the sewage sludge ash was characterized by X-ray fluorescence (XRF), leaching test and water solubilization. Dehydration of sludge was performed by controlled heating at temperatures of 180 degrees C, 350 degrees C, 600 degrees C, 850 degrees C and 1000 degrees C for 3 hours.
Resumo:
Nowadays, with increase amounts of sludge derived from the treatment of domestic sewage put pressure into research on systems for the adequate use of these materials. The aim of the present work is to study the use of sludge ash, from sintering and calcinated process, as a raw material for the ceramic industry. Using the sewage sludge ashes as ceramic raw material there will be no contamination of soil and underground water. Metals and toxic compounds like Al, Fe, Ba, Cr, Cu, Mn and Zn oxides were analyzed and characterized by X-ray fluorescence (XRF), scanning electron microscopy (SEM) and plasma emission spectroscopy (ICP-OES). The leached material was chemically analyzed where the integration of oxides into the ceramic matrix of sludge ash was observed. Residual decomposition was analyzed by TG, DTG and DTA curves.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
Neutron activation analysis and gamma-ray spectroscopy were used to determine the quantity of potassium and sodium in an ash sample of Tabebuia sp bombarded with thermal neutrons. These techniques, widely applied in nuclear physics, can be used in the context of wood science as an alternative for the usual physical chemistry methods applied in this area. The quantity of K and Na in an 8.60 +/- 0.10 mg of ash was determined as being 1.3 +/- 0.3 mg and 11.0 +/- 1.8 mu g, respectively. The ratio of Tabebuia sp converted into ash was also determined as 0.758 +/- 0.004%.
Resumo:
This study shows a possibility of using municipal sewage sludge after thermal treatment in the production of a filtering material to water treatment. Due to the fast urbanization and implementation of high standards for effluent in many countries in recent years, the sewage sludge is being produced in an ever increasing amount. Therefore, the use of sludge is a suitable solution for the expected large quantity of sludge. Dehydration of sludge was performed by controlled heating at temperatures of 1100 degrees C, 850 degrees C, 650 degrees C, 350 degrees C for 3 hours. After thermal treatment the sludge was characterized by X-ray fluorescence, TG/DTG/DTA, residue solubilization and residue lixiviation tests. The aim of the present work was to observe, thought the characterization techniques, if the treated sewage sludge is or not adequate to be used as filter material to water treatment. It will be verified which treatment temperature of the sludge offer possibility to its use in water treatment without carrying pollutants in concentrations out of the standards.
Resumo:
The possibility of thermal treatment plants of municipal wastewater is an alternative solution for the final disposition of the sludge produced on small cities as Barueri, a small town of São Paulo State, Brazil. Combustion and pyrolysis of that municipal waste, occurring respectively in air and nitrogen, have been studied by thermogravimetry (TG) and differential thermal analysis (DTA). The main steps of each case were analyzed and Kissinger plots were used to estimate respective activation energies. DTG peaks are more indicated to represent the condition of maximum reaction rates than DTA peaks.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A reciclagem agrícola do lodo de esgoto tem provocado o acúmulo de metais pesados no solo e na água, podendo atingir níveis tóxicos e causar danos às plantas cultivadas, aos animais e ao homem, por meio da cadeia trófica. Neste intuito foi desenvolvido o presente experimento, em condições de campo, entre 2000 e 2002, onde foram avaliados os efeitos da aplicação de lodo de esgoto por dois anos, sobre a extração de metais de transição (essenciais e não) pelo extrator DTPA em um Latossolo Vermelho distrófico (LVd) de textura média. As concentrações dos elementos metálicos: Mn, Fe, Cd, Ni, Co, Pb e Cr não foram detectados pelo método da absorção atômica na solução obtida com o extrator DTPA. A aplicação de lodo de esgoto causou inicialmente pequena elevação no pH do solo, posteriormente a diminuição do mesmo, e manteve-se próximo ao original. Foi possível concluir que, com a aplicação consecutiva do lodo, os teores extraíveis de Fe e Mn nas amostras de solos aumentaram gradativamente nos dois anos agrícolas, com as doses do lodo de esgoto aplicado, época de amostragens, e foram superiores ao tratamento testemunha. O extrator apresentou capacidade restrita para avaliação da fitodisponibilidade dos metais pesados decorrentes das baixas concentrações nas amostras de solo.
Resumo:
A soil sample was taken from the top 0-20cm at Jaboticabal county, São Paulo State, Brazil, air dried, sieved to 5mm, and placed into pots (2700g per pot). Sewage sludge was air-dried, ground to 2mm, and thoroughly mixed to the top 0-10cm soil of each pot, which were irrigated with distilled water in a total volume equivalent to the last 30years average rainfall in the region. Sorghum was sowed 120days after sewage sludge incorporation and then the irrigation was made according to the plants' requirement. When the plants were about 10 cm high, they were thinned to two per pot. Soil samples (0-10, 10-20, and 20-30 cm depth) were obtained immediately after the incorporation of sewage sludge and at 30, 60, 120, and 170 days after, air dried, sieved to 2 mm and analyzed for organic matter (OM), pH (0,01 mol L-1 CaCl2), extractable P (resin), potassium (K), calcium (Ca), and magnesium (Mg), amylase and cellulase activity. Sewage sludge increased soil OM, pH, extractable phosphorus (P), K. Ca. amylase and cellulase activity, especially at the rate 16 t ha(-1). Organic matter, extractable P, K, Ca, Mg. and amylase activity were higher in the top 0-10cm, while pH was higher in the 20-30cm layer. Amylase activity was not affected by sampling depth. Organic matter, pH, extractable P. K, Ca, and Mg decreased during the experimental period. Amylase activity decreased until sorghum was sowed and increased afterwards. Cellulase activity increased until 90 days after sewage sludge application and then decreased. Sewage sludge used in the experiment should already contain some amylase activity or a substance that was a soil enzyme activator and also a substance that was an inhibitor of soil cellulase inhibitor. Sonic of the plant nutrients contained in sewage sludge, mainly P, did not migrate down the soil column. an indication that sewage sludge should be incorporated into the soil to improve nutrient bioavailability. Sorghum roots increased amylase activity but did not affect cellulase activity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cellulose nanocrystals have been evaluated as reinforcement material in polymeric matrices due to their potential to improve the mechanical, optical, and dielectric properties of these matrixes. This work describes how high pressure defibrillation and chemical purification affect the sludge fiber morphology from micro to nanoscale. Microscopy techniques and X-ray diffraction were used to study the structure and properties of the prepared nanofibers and composites. Microscopic studies showed that the used individualization processes lead to a unique morphology of interconnected web-like structure of sludge fibers. The nanofibers are bundles of cellulose fibers having widths (5 to 30 nm) and estimated lengths of several micrometers.